Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biokompozyty
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote 3D Ornamentowane zdefiniowane struktury krzemionkowe otrzymane przez okrzemki
100%
PL
Zaprezentowano zwięzłą charakterystykę okrzemek z podaniem możliwości ich aplikacji w różnych gałęziach przemysłu.
EN
A review, with 54 refs., of propertions and methods for prod. of SiO₂ structures under lab. and pilot plant conditions.
EN
The aim of the research was to study green polyethylene hybrid composites reinforced with natural fillers. In our study the green high-density polyethylene produced from sugarcane-based ethanol was used as a matrix. The basalt fibers, corncob granules, coffee, hazelnut shells and tuff were added to the matrix. The influence of the temperature on the mechanical properties were investigated. Scanning electron microscopy was used to assess the quality of adhesion of the natural fillers to the polymer matrix.
PL
Celem badań było wytworzenie hybrydowych kompozytów na osnowie zielonego polietylenu wzmocnionych naturalnymi napełniaczami. Polietylen o dużej gęstości wyprodukowany z trzciny cukrowej został użyty jako matryca polimerowa. Do matrycy dodawano włókna bazaltowe, śrutę kukurydzianą, kawę, łupiny orzechów laskowych i tuf. Zbadano wpływ temperatury na właściwości mechaniczne. Skaningowy mikroskop elektronowy został użyty, aby ocenić jakość adhezji naturalnych napełniaczy do polimerowej osnowy.
|
2019
|
tom 25(1)
95-107
PL
Rozwój gospodarki glebowej na poziomie lokalnym i regionalnym napotyka wyzwania związane ze wzrostem poziomu zanieczyszczenia gleby w systemach zurbanizowanych. Tak więc intensywne użytkowanie gleby na Ukrainie w ostatnich latach spowodowało znaczną utratę próchnicy, czemu towarzyszą negatywne zmiany właściwości agrofizycznych, fizykochemicznych i biologicznych gleby. Celem badań było modelowanie procesu pobudzania naturalnych właściwości ochronnych kompleksu glebowego z uwagi na wpływ biokompozytu na osady ściekowe i fosfogips w warunkach siarczanowania. Przeprowadzono ekstrakcję frakcji chemicznych zanieczyszczonej gleby przed i po obróbce. Zastosowano dyfraktometrię rentgenowską i analizę mikroskopową do tworzenia obrazów powierzchniowych obrabianej gleby. Opracowano mapę składu mineralnego próbek gleby po przetworzeniu przez biokompozyt oparty na osadzie ściekowym i fosfogipsu. Opracowano model technologiczny procesu remediacji gleb, który obejmuje dwa etapy: uprawę aerobową z użyciem biokompozytu; etap fitoremediacji w celu dodatkowego leczenia.
EN
Purpose: Poly(3-hydroxybutyrate) (P3HB) is a biopolymer, but storing products from P3HB causes the deterioration of their properties leading to their brittleness. P3HB has also low thermal stability. Its melting point almost equals its degradation temperature. To obtain biodegradable and biocompatible materials characterized by higher thermal stability and better strength parameters than the unfilled P3HB, composites with the addition of polyurethanes were produced. Methods: The morphology, thermal, and mechanical property parameters of the biocomposites were examined using scanning electron microscopy, thermogravimetric analysis, standard differential scanning calorimetry, and typical strength machines. Results: Aliphatic polyurethanes, obtained by the reaction of 1,6-hexamethylene diisocyanate and polyethylene glycols, were used as modifiers. To check the influence of the glycol molar mass on the properties of the biocomposites, glycols with a molecular weight of 400 and 1000 g/mol were used. New biocomposites based on P3HB were produced with 5, 10, 15, and 20 wt. % content of polyurethane by direct mixing using a twin-screw extruder. The following property parameters of the prepared biocomposites were tested: degradation temperature, glass transition temperature, tensile strength, impact strength, and Brinell hardness. Conclusions: Improvement of the processing property parameters of P3HB-biocomposites with the addition of aliphatic polyurethanes was achieved by increasing the degradation temperature in relation to the degradation temperature of the unfilled P3HB by over 30 C. The performance property parameters have also been improved by reducing the brittleness compared to the P3HB, as evidenced by the increase in impact strength and the decrease in hardness with an increase in the amount of polyurethane obtained by the reaction of 1,6-hexamethylene diisocyanate and polyethylene glycol with a molecular weight of 400 g/mol (PU400) as modifier.
EN
The aging effect in water atthe temperature of 100±2°C on selected mechanical properties of polypropylene with organic fillers (hemp chaff, a mixture of oak, birch and maple leaves) was investigated. A significant influence of the aging process on the impact strength and elongation at break was observed. The degradation processes were also visible on the surface of the samples.
PL
Zbadano wpływ starzenia w wodzie w temperaturze 100±2°C na wybrane właściwości mechaniczne polipropylenu z napełniaczami organicznymi (plewy konopne, mieszanina liści dębu, brzozy i klonu). Stwierdzono istotny wpływ procesu starzenia na udarność i wydłużenie względne przy zerwaniu. Procesy degradacji widoczne były również na powierzchni próbek.
EN
Biocomposites consisting of polylactic acid reinforced with 2 to 8 wt.% walnut shell and pine needle ash fillers were fabricated by the microwave heating technique. The mechanical properties such as tensile strength, flexural strength, impact strength, Vickers hardness, and sliding wear behavior of the produced biocomposites were examined. The tensile strength declined by 11.62% with a reinforcement of 8 wt.% pine needle ash (PNA) in the PLA matrix as compared to the neat PLA matrix. The flexural strength also dropped by 3.09% with the reinforcement of 8 wt.% PNA in the PLA matrix compared to the neat PLA. It was found that the impact energy was enhanced by 77.27 and 66.67% with the reinforcement of 8 wt.% PNA and WN fillers in the PLA matrix, respectively. The Vickers hardness also improved by 14.54 and 10.35% with the reinforcement of 8 wt.% PNA and WN fillers in the PLA matrix, respectively. In addition, the weight loss due to sliding wear was improved by 95.86 and 94.52% with the reinforcement of 8 wt.% WN and PNA fillers in the PLA matrix as compared to the neat PLA matrix, respectively. The drilling forces (thrust force and torque) were additionally recorded during the drilling process of the PNA and WN filled PLA based biocomposites.
EN
The manufacturing of composites from biomaterials enables the production of environmentand user-friendly biodegradable products. The matrix of such composite materials is made of biopolymers such as PLA or PGA, while the reinforcement is usually made of natural fibers. Such composites have unique physical and mechanical properties as well as distinctive, eye-catching performance and aesthetic characteristics such as texture, color or roughness. This paper presents the results of colorimetric examination of polymer-linen biocomposite materials under abiotic degradation. The colorimetric examination was made based on a CIELAB model determining the values of lightness, color saturation, chromatic colors and total color difference. The SEM morphology of the specimen surface fracture was also examined. The obtained results show a significant effect of abiotic degradation on the tested parameters.
EN
The article presents the results of the research related to the decomposition of polylactic acid (PLA)/halloysite nanotube (HNTs) biocomposites into a simple organic form. After manufacturing the nanocomposites, the evaluation of the composting process simulation was conducted using the biodegradation method. First, the selected properties of PLA/HNTs biocomposites, such as density, water absorption, and impact strength were tested. Next, the impact of the composting process on the behavior of PLA/HNTs composites was investigated from 30 to 90 days. Finally, the loss of mass of the composites, hardness, and the structural changes of biocomposites under the composting conditions before and after the composting were evaluated using SEM microscopy. The results showed that the PLA modified by HNT particles has biodegradation-friendly properties and therein is fully suitable for organic recycling. Due to this, in the coming years, it may contribute to the replacement of non-biodegradability polymers, i.e. polyolefins and polyesters, and reduction of plastic packaging wastes.
EN
The growing, global concern for the natural environment contributes to the intensive research on at least partial replacing of petroleum-based raw materials with bio-renewable resources on an industrial scale. The chemical composition and oligomeric nature of plant oils make them a promising bio-renewable base for development of new polymer materials. The conversion of plant oils and fats to epoxidized plant oils (EO) and polyols are the processes intensively studied. Epoxides based on soybean oil, i.e. one of the most easily available vegetable oils, have a high potential for polymeric materials preparation. In addition, linseed and castor oils are of great importance in this area as well. This article presents the latest achievements in the production of novel polymer materials based on epoxidized vegetable oils and their derivatives. The importance and application of EO for polymer materials should be considered multidirectional. Epoxidized plant oils are the platform chemicals for polyethers, polyesters, polyurethanes and polyhydroxyurethanes, but also can act as modifiers for natural and synthetic polymers. Polymers based on epoxidized vegetable oils in combination with filler – including more and more popular natural fibers, allow to obtain biocomposites. Applying bioresin and natural reinforcement reduces the carbon footprint. Moreover, such materials may exhibit competitive properties against petrochemical polymer products and meet the requirements of the automotive, packaging, furniture, and construction industries. Additionally, obtaining materials showing functional properties, including shape memory and self-healing ability is also possible.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.