Analysed by differential spectroscopy, 1208 empirical spectra of light absorption apl(?) by Baltic phytoplankton were spectrally decomposed into 26 elementary Gaussian component bands. At the same time the composition and concentrations of each of the 5 main groups of pigments (chlorophylls a, chlorophylls b, chlorophylls c, photosynthetic carotenoids and photoprotecting carotenoids) were analysed in 782 samples by HPLC. Inspection of the correlations between the intensities of the 26 elementary absorption bands and the concentrations of the pigment groups resulted in given elementary bands being attributed to particular pigment groups and the spectra of the mass-specific absorption coefficients established for these pigment groups. Moreover, balancing the absorption effects due to these 5 pigment groups against the overall absorption spectra of phytoplankton suggested the presence of a sixth group of pigments, as yet unidentified (UP), undetected by HPLC. A preliminary mathematical description of the spectral absorption properties of these UP was established. Like some forms of phycobilins, these pigments are strong absorbers in the 450-650 nm spectral region. The packaging effect of pigments in Baltic phytoplankton was analysed statistically, then correlated with the concentration of chlorophyll a in Baltic water. As a result, a Baltic version of the algorithm of light absorption by phytoplankton could be developed. This algorithm can be applied to estimate overall phytoplankton absorption spectra and their components due to the various groups of pigments from a knowledge of their concentrations in Baltic water.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this work, we propose a methodology to estimate the profile of chlorophyll concentration from the upwelling radiation at the ocean surface, using a system of artificial neural networks (ANNs). The input patterns to train the networks are obtained from the resolution of the radiative transfer equation, where the absorption and scattering coefficients are represented by bio-optical models, with the profile of chlorophyll concentrations based on a shifted-Gaussian model. In the performed analysis, we used 14 720 profiles of chlorophyll that were generated by attributing two values to the biomass quantity, and by considering two sets of wavelengths and three sets containing the directions in which the radiation emitted at the surface is measured. To be able to recover the chlorophyll profile, we need to use a system of networks that works in a “cascade mode”. The first one performs an analysis on the features of the chlorophyll profile from the upwelling radiation and determines which profiles can be recovered. The second and third ANNs act only on those profiles that can be recovered. The second ANN performs estimation of the standard deviation from the upwelling radiation and the chlorophyll concentration at the surface. Finally, the third ANN performs an estimation of the peak depth from the upwelling radiation, the chlorophyll concentration at the surface and the standard deviation estimated by second network. The stopping criteria we adopted was the cross-validation process. The obtained results show that the proposed methodology is quite promising.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.