Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bio-optical modelling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Practical applications of the multi-component marine photosynthesis model (MCM)
100%
EN
This paper describes the applications and accuracy analyses of our multi-component model of marine photosynthesis, given in detail in Woźniak et al. (2003). We now describe an application of the model to determine quantities characterising the photosynthesis of marine algae, especially the quantum yield of photosynthesis and photosynthetic primary production. These calculations have permitted the analysis of the variability of these photosynthesis characteristics in a diversity of seas, at different seasons, and at different depths. Because of its structure, the model can be used as the "marine part" of break a "satellite" algorithm for monitoring primary production in the sea (the set of input data necessary for the calculations can be determined with remote sensing methods). With this in mind, in the present work, we have tested and verified the model using empirical data. The verification yielded satisfactory results: for example, the statistical errors in estimates of primary production in the water column for Case 1 Waters do not exceed 45%. Hence, this model is far more accurate than earlier, less complex models hitherto applied in satellite algorithms.
2
Content available remote Modelling light and photosynthesis in the marine environment
84%
EN
The overriding and far-reaching aim of our work has been to achieve a good understanding of the processes of light interaction with phytoplankton in the sea and to develop an innovative physical model of photosynthesis in the marine environment, suitable for the remote sensing of marine primary production. Unlike previous models, the present one takes greater account of the complexity of the physiological processes in phytoplankton. We have focused in particular on photophysiological processes, which are governed directly or indirectly by light energy, or in which light, besides the nutrient content in and the temperature of seawater, is one of the principal limiting factors. To achieve this aim we have carried out comprehensive statistical analyses of the natural variability of the main photophysiological properties of phytoplankton and their links with the principal abiotic factors in the sea. These analyses have made use of extensive empirical data gathered in a wide diversity of seas and oceans by Polish and Russian teams as well as by joint Polish-Russian expeditions. Data sets available on the Internet have also been applied. As a result, a set of more or less complex, semi-empirical models of light-stimulated processes occurring in marine phytoplankton cells has been developed. The trophic type of sea, photo-acclimation and the production of photoprotecting carotenoids, chromatic acclimation and the production of various forms of chlorophyll-antennas and photosynthetic carotenoids, cell adaptation by the package effect, light absorption, photosynthesis, photoinhibition, the fluorescence effect, and the activation of PS2 centres are all considered in the models. These take into account not only the influence of light, but also, indirectly, that of the vertical mixing of water; in the case of photosynthesis, the quantum yield has been also formulated as being dependent on the nutrient concentrations and the temperature of seawater. The bio-optical spectral models of irradiance transmittance in case 1 oceanic waters and case 2 Baltic waters, developed earlier, also are described in this paper. The development of the models presented here is not yet complete and they all need continual improvement. Nevertheless, we have used them on a preliminary basis for calculating various photosynthetic characteristics at different depths in the sea, such as the concentration of chlorophyll and other pigments, and primary production. The practical algorithm we have constructed allows the vertical distribution of these characteristics to be determined from three input data: chlorophyll a concentration, irradiance, and temperature at the sea surface. Since all three data can be measured remotely, our algorithm can be applied as the "marine part" of the remote sensing algorithms used for detecting marine photosynthesis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.