Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  binomial coefficients
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On Pascal's triangle modulo $p^2$
100%
2
Content available Jordan numbers, Stirling numbers and sums of powers
44%
EN
In the paper a new combinatorical interpretation of the Jordan numbers is presented. Binomial type formulae connecting both kinds of numbers mentioned in the title are given. The decomposition of the product of polynomial of variable n into the sums of kth powers of consecutive integers from 1 to n is also studied.
EN
This paper, resulting from two summer programs of Research Experience for Undergraduates, examines the congruence classes of binomial coefficients to a prime square modulus as given by a fractal generation process for lattice path counts. The process depends on the isomorphism of partial semigroup structures associated with each iteration. We also consider integrality properties of certain critical coefficients that arise in the generation process. Generalizing the application of these coefficients to arbitrary arguments, instead of just to the prime arguments appearing in their original function, it transpires that integrality of the coefficients is indicative of the primality of the argument.
|
|
tom Vol. 16, nr 2
265-277
EN
In this paper we derive some identities of harmonic number sums with binomial coefficients, we also give integral representations for the sums. We recover some existing identities and introduce a number of new ones.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.