Drawing processes apply to obtain the bimetallic tubes from the different metals and alloys, combined in the solid state, which significantly affects the specificity of this process. The manufacturing of bimetallic tubes by drawing process depends on many factors which include: preparation of the surface of materials joined in the solid state, the geometric parameters of the working tool, technological parameters of the drawing process (drawing speed, type of lubricant, the use of back pull etc.). Generally, the cold drawing process of producing the bimetallic tubes refers to metals which have high ductility (copper, aluminum, etc.). The tube sinking (tube drawing without a mandrel) of bimetallic tubes together with joining them at the interface of the two metal in the solid-state is applied for tubes of the diameter range between 6 to 20 mm and based on of the reducing the diameter of the tube. However, a slight increase of wall thickness ca. 0.05 ÷ 0.10 mm can appear, which is not dangerous phenomenon in case of producing the bimetallic tubes by joining in the solid-state. The aim of the research was to investigate the technology of tubes drawing process from non-ferrous metal, drawing process of bimetallic tubes and the production of bimetallic tubes in layers composition: cooper Cu-ETP - brass CuZn37 and CuZn37 brass - copper Cu-ETP in the tube sinking process. The research program included: production of bimetallic tubes with a different composition (Cu- ETP-CuZn37 and CuZn37-Cu-ETP) and a different percentage of the cross-section components; analysis of changes of tube wall thickness and the layer composition of the bimetallic tube, based on measurements on the workshop microscope; analysis of the material flow in the process of the bimetallic tubes production based on the measurements results of a profilograph CP-200.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper aims to investigate the performance of thin-walled circular stainless steel-carbon steel bimetallic tube confined concrete slender columns under eccentric compression. 14 slender columns including bimetallic tube confined concrete (BTCC) with and without rebar, and concrete-filled bimetallic tube (CFBT) were tested. A parametric analysis is conducted based on the validated finite-element model. The results show that the two steel tube layers worked well together and the thin-walled BTCC specimens behaved in a ductile manner. Under the same parameters, the decrease of the diameter–thickness ratio of bimetallic tube improves the bearing capacity and rigidity of the BTCC slender column, but reduces its ductility in the descending stage. The confinement effect of bimetallic tube on the concrete in BTCC columns is stronger than that in CFBT columns. When the yield strength of stainless steel and carbon steel is similar, the stainless steel–total steel ratio has little effect on the capacity of the column. Provided meeting the requirements of corrosion resistance, relatively thinner stainless steel tube is preferred to reduce the cost. The comparison between the simulation and the calculation results shows that the current design method can predict the bearing capacity of the BTCC slender column with large diameter–thickness ratio.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.