Let $r_n* ∈ ℛ_{nn}$ be the best rational approximant to $f(x) = x^α$, 1 > α > 0, on [0,1] in the uniform norm. It is well known that all poles and zeros of $r_n*$ lie on the negative axis $ℝ_{<0}$. In the present paper we investigate the asymptotic distribution of these poles and zeros as n → ∞. In addition we determine the asymptotic distribution of the extreme points of the error function $e_n = f - r_n*$ on [0,1], and survey related convergence results.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For bivariate periodic functions Lebesgue-integrable on the basic square and corresponding p>0, the rates of Lp - convergence of the means (1), (3) are estimated. The one-dimensional case was considered in Sections 3, 4 of [6].
In this paper, we prove a fixed point theorem for a rational type contraction mapping in the frame work of metric spaces. Also, we extend Brosowski-Meinardus type results on invariant approximation for such class of contraction mappings. The results proved extend some of the known results existing in the literature.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.