The structural concept of the dome dates back to the Pantheon in Rome. It is used as the cover of many churches and mosques all around the world. Light solutions, with a well-visible dome-shaped truss skeleton, are often preferred in modern architecture. Base isolation techniques can be adopted to mitigate the seismic effects. This paper aims to investigate the efficiency of different designs for the truss skeleton. To solve the problem, one has to assign the constraints, the materials and the geometry of the dome, its supporting structure and the isolation devices (number, locations, and type). The screening of the effects of different scheme assumptions on structural behaviour provides a better insight into the problem.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present study was focused on determining the effectives of a nonlinear mathematical model in simulating complex mechanical behaviour of a seismic isolation system made of Polymeric Bearings. The proposed mathematical model defines the lateral force as a nonlinear function of the shear displacement and the deformation velocity. The effectiveness of the proposed mathematical model was verified by comparing the seismic response of a 2.30 m high two-storey structure model with the results obtained from the detailed numerical analysis. The results obtained from the numerical investigation using lumped-mass models confirmed that the proposed nonlinear mathematical model can be successfully adopted to simulate the complex mechanical behaviour of the Polymeric Bearings in numerical studies.
PL
W pracy dokonano oceny efektywności modelu matematycznego, opisującego nieliniowe zachowanie prototypu wibroizolacji sejsmicznej w postaci Łożysk Polimerowych. W zaproponowanym modelu matematycznym siła pozioma jest nieliniową funkcją przemieszczenia oraz prędkości. Oceny efektywności modelu matematycznego do opisu nieliniowego zachowania łożysk polimerowych dokonano poprzez porównanie wyników badań eksperymentalnych przeprowadzonych na stole sejsmicznym, w których dwupiętrowy model konstrukcji o całkowitej wysokości 2,30 m poddano różnym obciążeniom dynamicznym, z wynikami analiz numerycznych. Duża zgodność wyników analiz numerycznych z wynikami otrzymanymi z badań eksperymentalnych potwierdziła poprawność zaproponowanego modelu matematycznego do symulacji zachowania Łożysk Polimerowych.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.