The aim of this study is to propose a new baroreflex sensitivity (BRS) index using improved Hilbert–Huang transform (HHT) using weighted coherence (CW) criterion and apply it to assess baroreflex in supine and standing postures. Improved HHT is obtained by addressing the mode mixing and end effect problems associated with empirical mode decomposition which is a required step in the computation of HHT and thus mitigating the unwanted low frequency component from the power spectrum. This study was first performed on synthetic signals generated using integral pulse frequency model and further extended to real RR interval and systolic blood pressure records of 50 healthy subjects, 20 post acute myocardial infarction patients undergoing postural stress from supine to standing position. Evaluation is also performed on standard EuroBaVar database, comprising of 21 subjects, under supine and standing positions. The results are (i) enhanced values of supine-to-standing low frequency BRS index (α-LF) equal to 1.78 and high frequency BRS index (α-HF) equal to 2.48 are obtained using improved HHT compared to standard HHT (α-LF = 1.54, α-HF = 2.36) and traditional power spectral density (α-LF = 1.55, α-HF = 2.34) for healthy subjects, (ii) there is an increased rate of change of LF/HF power ratios from supine to standing positions, and (iii) number of BRS responses obtained using CW criterion are greater than those obtained by using mean coherence criterion. In conclusion, the new BRS index takes into consid-eration the non-linear nature of interactions between heart rate variability and systolic blood pressure variability.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.