Various photovoltaic parameters, i.e., electron injection (ΔGinject.), electronic coupling constants (|VRP|), light harvesting efficiencies (LHE), band alignment and electronic properties of five chalcone derivatives were studied by density functional theory (DFT) and time domain. The light was also shed on the effect of different electron donating groups and their strength intensity on the electronic and charge transfer properties. The balanced hole and electron reorganization energies for Comp 4 showed that it might have better ambipolar charge transfer in nature. The strong electron donating group(s) usually enhance(s) the ΔGinject. and |VRP| of chalcones as -N(CH3)2 > OCH3 > OH. Additionally, ΔGinject. and |VRP| of various substituted chalcone derivatives have been observed as trimethoxy > dimethoxy > monomethoxy. The greater electron donating ability of substituents is also favorable for the staggered band alignment. The superior ΔGinject. of all the studied chalcones than of the referenced compounds disclosed that the prior compounds would be proficient photovoltaic materials.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.