Antibiotic resistance of bacteria was observed in various aquatic environments including seas, rivers, lakes, coastal areas, surface water and sediments. The increased implementation of antibiotics into these environments through medical therapy, agriculture and animal husbandry has resulted in new selective pressures on natural bacterial aquatic populations. Antibiotic resistance of heterotrophic bacteria isolated from the surface microlayer and subsurface water of freshwater coastal polymictic and low-productive lake was studied. Antibiotic resistance was determined by the single disc diffusion method. The resistance level of bacteria to various antibiotics differed considerably. Bacteria were most resistant to ampicillin, ciprofloxacin, clindamycin, erythromycin and penicillin. Majority of bacterial strains showed resistance to 4.6 out of 18 antibiotics tested. As a rule, neustonic bacteria (antibiotic resistance index, ARI 0.44) were more resistant to the studied antibiotics than planktonic bacteria (ARI 0.32). 70-90% of neustonic bacteria were resistant to ampicillin, clindamycin and erythromycin, 60-70% of planktonic bacteria were resistant to ampicillin, ciprofloxacin and penicillin. Differences between pigmented and non-pigmented bacteria in their resistance to the tested antibiotics were observed. Above 40% of achromogenic bacterial strains were resistant to ampicillin, clindamycin and penicillin. Among bacterial strains characterised by their ability to synthesize carotenoids, more than 30% was resistant to ampicillin and ciprofloxacin. Bacterial resistance level to antibiotics depended on their chemical structure. Bacteria isolated from study lake were most resistant to quinolones and lincosamides while they were most susceptible to tetracyclines and aminoglycosides. Results presented in this paper indicate that antibiotics are a significant selection factor and probably play an important role in regulating the composition of bacterial communities in aquatic ecosystems. Adaptive responses of bacterial communities to several antibiotics observed in the present study may have possible implications for the public health.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The investigation was conducted in the Kopacki Rit Nature Park (eastern Croatia) which is established to protect the floodplain area of the Danube River. The samples were collected monthly in four sites (channels and lakes) with increasing distance from the river. The aim of investigation was to examine trophic structure of culturable bacterioplankton in relation to inundation-isolation cycles on sampling sites with unequal degree of connection with the Danube river. A change in the ratio of copiotrophs (r-strategists) to oligotrophs (K-strategists) was expected as the different organic carbon sources emerged. The composition of variables was revealed by Principal Component Analysis of abiotic water properties (temperature, water depth, transparency, pH, electrical conductivity, dissolved oxygen, nutrient concentrations) and the chlorophyll-a concentration. Scores of significant components were used in a Multiple Regression as independent variables and the relationship between the scores and abundance of colony forming units (CFUs) was examined. Regression model was significant only for copiotrophs, and their relative dominance was noticed in couple of samples on more isolated sampling sites. In all other samples oligotrophs were a dominant group, especially during the flood pulses or drainage after it. Their elevated abundance was equally distributed in all groups revealed by Principal Component Analysis, and corresponds to the fluvial action. Also concerning the [eta] squared and R squared values from the two-way ANOVA (sites/samplings) oligotrophs are highly influenced by the sampling period i.e. inundation-isolation cycles. They are probably driven by the allochthonous organic matter provided by floods or have allochthonous origin itself. At the same time, copiotrophs are to some extent coupled with the established water properties, i. e. bottom-up controlled and their abundance is influenced by the localisation of sampling sites in the floodplain. These results describe the development of the conditions that promote habitat specific succession of the culturable bacterioplankton. Established differences had disappeared after additional inundation-isolation cycles.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Floodplains are lateral river extensions in which lotic, semi-lotic and lentic habitats are formed resulting in high habitat heterogeniety. Consequently biota development is highely influenced by its location within the floodplain and by the hydrological cycle. In the present paper the development of planktonic and biofilm bacteria associated with artificial substrates were investigated in the floodplain lake of the Danube River (Lake Sakadas, Croatia) during different hydrological situations. The aim of the study was to investigate if there was any difference in the bacterial development between two compartments - plankton and biofilm, and how the floods influence these communities. The samples were taken monthly (July.November 2007) from surface and bottom water layer (plankton) and exposed glass slides (biofilm) at two sampling stations. For these purposes bacterial abundance was estimated by the determination of number of colony forming units (CFUs). The development of bacterioplankton was equal between the sites and had its maximum at the time of falling water after the flood pulse. Bacterioplankton abundance correlated significantly with water properties, and it had predictable dynamics comparable with the previous results established in the same floodplain area (Kopacki Rit). The development of biofilm bacteria differed between the sites, and had its maximum prior to the flood pulse, or during the flood. The abundance of attached bacteria correlated with biofilm biomass while it was not significantly correlated with the water properties. Such results describe different development of planktonic and biofilm bacteria. Biofilm bacteria are more independent, compared to bacterioplankton, from the floodplain hydrology.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.