W artykule przedstawiono rozwiązanie konstrukcyjne typowej głowicy drukującej chłodzonej powietrzem, wykorzystywanej w drukarkach 3D w technologii FDM oraz innowacyjnej głowicy, w której zastosowano chłodzenie cieczą. Dla obu wariantów została wykonana analiza termiczna przy użyciu programu SolidWorks Flow.
EN
The article presents the design solution of typical air-cooled printing head used in FDM technology 3D printers and innovational head, in which the liquid cooling has been applied. Both variants were thermally analyzed using SolidWorks Flow package.
This article examines in depth the most recent thermal testing techniques for lithium-ion batteries (LIBs). Temperature estimation circuits can be divided into six divisions based on modeling and calculation methods, including electrochemical computational modeling, equivalent electric circuit modeling (EECM), machine learning (ML), digital analysis, direct impedance measurement and magnetic nanoparticles as a base. Complexity, accuracy and computational cost-based EECM circuits are feasible. The accuracy, usability and adaptability of diagrams produced using ML have the potential to be very high. However, none of them can anticipate the low-cost integrated BMS in real time due to their high computational costs. An appropriate solution might be a hybrid strategy that combines EECM and ML.
Nickel-based alloys are widely used in industries such as the aircraft industry, chemicals, power generation, and others. Their stable mechanical properties in combination with high resistance to aggressive environments at high temperatures make these materials suitable for the production of components of devices and machines intended for operation in extremely difficult conditions, e.g. in aircraft engines. This paper presents the results of thermal and mechanical tests performed on precision castings made of the Inconel 713C alloy and intended for use in the production of low pressure turbine blades. The tests enabled the determination of the nil strength temperature (NST), the nil ductility temperature (NDT), and the ductility recovery temperature (DRT) of the material tested. Based on the values obtained, the high temperature brittleness range (HTBR) and the hot cracking resistance index were determined. Metallographic examinations were conducted in order to describe the cracking mechanisms. It was found that the main cracking mechanism was the partial melting of grains and subsequently the rupture of a thin liquid film along crystal boundaries as a result of deformation during crystallisation. Another cracking mechanism identified was the DDC (Ductility Dip Cracking) mechanism. The results obtained provide a basis for improving precision casting processes for aircraft components and constitute guidelines for designers, engineers, and casting technologists.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.