Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  błąd człowieka
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Obszarem analiz są przejazdy kolejowe kategorii A, które jako jedyne wśród sześciu kategorii przejazdów występujących na sieci dróg w Polsce są kontrolowane przez człowieka – dróżnika przejazdowego. Posiadają one zatem złożony system bezpieczeństwa (system kontroli ruchu drogowego), którego kluczowym elementem jest człowiek. Nie gwarantuje to jednak braku zdarzeń niepożądanych (ZN) a szczególność roli człowieka jako operatora – dróżnika, kierowcy, maszynisty w takich systemach powoduje, że jego działania przyczyniają się do powstania ZN o poważnych skutkach. Ich powaga powoduje, że uzasadniona jest potrzeba prowadzenia analiz tych zdarzeń na różnych poziomach struktur zajmujących się zagadnieniami bezpieczeństwa. Szczególnie pożądane jest wskazanie przyczyn (źródeł) powstawania ZN co daje możliwość wdrożenia odpowiednich działań. Celem prac podjętych w niniejszym artykule jest przeprowadzenie analizy ZN na przejazdach kolejowych z uwzględnieniem błędów popełnianych przez człowieka oraz wykorzystaniem metody FTA.
EN
The area of analysis are level crossings of category A, which alone among the six categories of level crossings in Poland are controlled by human – level crossing attendant. There is therefore a complex system of safety (traffic control system), whose key element is human. This does not guarantee the absence of undesirable events (ZN) and the specificity of the role of man as the operator – level crossingattendant, the driver, the train driver in such systems means that its activities contribute to the creation of ZN with serious consequences. The seriousness of ZN justified the need for the analysis of these events at different levels of the structures dealing with questions of safety. In particular, it is desirable to identify the causes (sources) of ZN which gives the possibility of implementing appropriate action. The aim of the work undertaken in this article is to analyze ZN at level crossings, taking into account human error and using the method FTA.
Logistyka
|
2015
|
tom nr 3
840--850, CD 1
PL
Niniejsze opracowanie przedstawia negatywne zjawiska i zdarzenia w ruchu drogowym, których sprawcą jest człowiek. Opracowanie ukazuje człowieka jako organizatora ruchu, błędy, jakie w tej roli popełnia i błędy człowieka uczestnika ruchu, a także realne i potencjalne zagrożenia za tym idące. Przedstawiając człowieka jako sprawcę wielu negatywnych zdarzeń i sytuacji drogowych będziemy szukać wytłumaczenia i rozwiązania tych bardzo ważnych problemów, które dotyczą całego społeczeństwa, wobec których nie możemy pozostać obojętni.
EN
This elaboration presents a couple of occurrences and effects in road traffic which the person is causer. The elaboration shows a man as a traffic organizer and shows what type of errors he can do too. The elaboration presents a man as a participant in road traffic, his errors and real and potential dangers by reason of this errors. Introducing man as a causer of many negative situations in the way we will be search an explanation and solution of each problems. These problems are very important and affect the whole society therefore we can not stay indifferent to this situation.
EN
Introduction. Studying human errors as a risk factor in the occurrence of accidents is necessary. Thus, the aim of this study was to identify, predict and control human errors in industrial control units. Method. This is a case study carried out using SHERPA in the first unit of Zagros Methanol of Asalooyeh, Iran, and its subunits. To collect the required data, various methods were used: observing, interviewing processing specialists and control unit operators, and studying technical documents and records. Results. In total, 222 human errors were identified in various occupational tasks. This study showed that 48.62% of them were action errors, 31.97% were checking errors, 6.75% were retrieval errors, 11.70% were communication errors and 0.90% were selection errors. Conclusion. It can be inferred that this method is appropriate for different industries, and it is useful for identifying human errors leading to hazardous accidents.
EN
This article is an introduction to the analysis of human reliability in specific anthropotechnic systems, such as marine power plants. The human factor is discussed as one that is responsible for creating dangerous situations during the operation of offshore technical objects, mainly sea-going vessels. Besides, we indicate the place of a human being in marine technical systems, his specific qualities and interaction with the environment. Selected classifications of human errors are given as well as their particular causes. Then we present a model of an autonomous system referring to the human being, based on Mazur's concept. Besides, potential fault nodes resulting from that model are specified. We show examples of quality and quantity models that are helpful in an analysis of the reliability of the human, an element of such technical systems as marine power plants. Final remarks include possible applications of mathematical models herein presented in analyses as well as some restrictions in the use of these models. Emphasis has been put on essential difficulties in utilizing simulators for the examination of the reliability of the human considered as the operator of a marine power plant. These difficulties are due to a variety of interactions within the system (the vessel) and relations with the external environment.
PL
W materiale dokonano ogólnego wprowadzenia do tematyki analizy niezawodności człowieka w specyficznych systemach antropotechnicznych, jakimi są siłownie okrętowe. Wskazano na udział czynnika ludzkiego w powstawaniu sytuacji niebezpiecznych podczas pracy obiektów oceanotechnicznych, w tym statków morskich oraz miejsce człowieka w okrętowych systemach technicznych, jego specyficzne cechy i interakcje z otoczeniem. W artykule przedstawiono wybrane klasyfikacje błędów człowieka oraz wskazano szczególne przyczyny ich powstawania. Przybliżono, oparty na koncepcji Mazura, model systemu autonomicznego w odniesieniu do człowieka oraz wyszczególniono wynikające z tego modelu potencjalne węzły niezdatności. W artykule pokazano przykładowe modele jakościowe i ilościowe pozwalające na wsparcie analizy niezawodności człowieka jako elementu systemów technicznych, jakimi są siłownie okrętowe. W uwagach końcowych omówiono możliwość wykorzystania w analizach przedstawionych w pracy modeli matematycznych i ewentualne ograniczenia ich zastosowań oraz zaakcentowano istotne trudności wykorzystania symulatorów w analizie niezawodności człowieka - eksploatatora siłowni okrętowej z uwagi na specyficzne interakcje zarówno wewnątrz systemu jakim jest statek, jak też związki ze środowiskiem zewnętrznym.
EN
Accidents caused by human error are prominent in the medical field. The present study identified medical errors in the emergency triage area by assessing the tasks of all healthcare workers employed in the triage area of an educational hospital in Tehran, Iran in 2014. Data were collected using the systematic human error reduction and prediction approach (SHERPA). The tasks and sub-tasks were determined and analyzed using hierarchical analysis and the errors were extracted. A total of 199 human errors were identified in the different tasks. The rate of error for action was 46.8%, checking was 25.6%, retrieval was 8.5%, communication was 12.1% and selection was 7%. Rate of unacceptable and unfavorable risks were 21.1% and 38.6%, respectively. SHERPA was shown to be an appropriate technique for detecting medical errors. The establishment of control programs should be a high priority in the management and implementation of health facilities in triage areas.
6
Content available Usage of Human Reliability Quantification Methods
84%
EN
Human reliability quantification (HRQ) methods are becoming increasingly important in risk and accident assessment in systems these terms are usually related to (hi-tech industrial systems, including nuclear and chemical plants). These methods began to intensively develop after numerous accidents caused by human error or inadequate activity of people who controlled and managed complex technological processes. For already existing systems, but also for new ones, it is important to assess the possibility of an accident. Determination of possible preventive activities, which include the influence of human error on the safety of a system, is also required. These are the main goals of the HRQ method. Using Absolute Probability Judgment (APJ) and Success Likelihood Index Methods (SLIM) HRQ techniques in control and management centers in electro-power systems in Belgrade and railway traffic in Nis (both in Serbia and Montenegro) are shown in this paper.
EN
This article presents the problem of proper use of navigational integrated equipment installed on modern vessels. Large number of electronic aids to navigation and even greater amount of information obtained make it possible to integrate and arrange these devices in a proper way. Such arrangement of all instruments make it possible to present all their data and information on the screen of electronic chart. The dynamic development of information technology gave rise to electronic charts. The authors focused on the possibilities which are offered by electronic charts and presented the possibility of integrating individual instruments such as gyrocompass, log, echo sounder, GPS, ARPA and AIS and the information gathered from them with an electronic chart. This is a subject with further prospects and both all the companies producing the software as well as the ship-owners aim at the most efficient use of this device in order to improve the safety of navigation. This work also presents the mistakes which are made when electronic charts are used improperly. The further development of this system and the possibilities it can offer the future users are also presented here.
EN
“Human error” is often cited as cause of occupational mishaps and industrial accidents. Human error, however, can also be seen as an effect (rather than the cause) of trouble deeper inside systems. The latter perspective is called the “new view” in ergonomics today. This paper details some of the antecedents and implications of the old and the new view, indicating that human error is a judgment made in hindsight, whereas actual performance makes sense to workers at the time. Support for the new view is drawn from recent research into accidents as emergent phenomena without clear “root causes;” where deviance has become a generally accepted standard of normal operations; and where organizations reveal “messy interiors” no matter whether they are predisposed to an accident or not.
EN
Introduction. The majority of industrial accidents occur because of human errors. Human error has different causes, however, in all cases cognitive abilities and limitations of human play an important role. Occupational cognitive failures are cognitively-based human errors that occur at work. The aim of this study was to examine the relationship between occupational cognitive failures and safety consequences. Method. Personnel of a large industrial company in Iran filled out an occupational cognitive failure questionnaire (OCFQ) and answered questions on accidents. Univariate and multiple logistic regression analysis were used to determine the relationship between cognitive failures and safety consequences. Results. According to developed regression models, personnel with a high rate of cognitive failure, in comparison to low rate, have a high risk of minor injury involvement (OR 5.1, 95% CI [2.62, 10.3]); similar results were for major injury and near miss. Discussion. The results of this study revealed usefulness of the OCFQ as a tool of predicting safetyrelated consequences and planning preventive actions.
EN
Electric shock accident is one of the main causes of fatal construction accidents. In this study, 101 electric shock accidents are analyzed to mine the potential associations of human errors. The modified Human Factors Analysis and Classification System (HFACS) is used to classify human factors of accident causes. Characteristics and potential causes of the accidents are identified by employing frequency analysis. Chi-square test and Apriori algorithm are utilized to explore the associations among the causes. Some significant association between any of two factors are shared. According to association rules using three criteria: support (S), confidence (C) and lift (L), the two key paths are extracted based on the hierarchy of the HFACS. One is: organizational process loopholes → failed to correct problem → perceptual and decision errors (S = 0.11, C = 0.423, L = 1.02), and the other is: organizational process loopholes → poor skill level of workers → routine violation (S = 0.149, C = 0.789, L = 1.945). Managerial implications are proposed to prevent or reduce accidents based on interconnections of factors and key paths.
EN
All oil and gas pipeline systems are run by human operators (called controllers) who use computer-based workstations in control rooms to “control” pipelines. Several human factor elements could contribute to the lack of controller success in preventing or mitigating pipeline accidents/incidents. These elements exist in both the work environment and also in the computer system design/operation (such as data presentation and alarm configuration). Some work environment examples include shift hours, shift length, circadian rhythms, shift change-over processes, fatigue countermeasures, ergonomics factors, workplace distractions, and physical interaction with control system computers. The major objective of this paper is to demonstrate the critical effects of human and organizational factors and also to highlight the role of their interactions with automation (and automated devices) in the safe operation of complex, large-scale pipeline systems. A case study to demonstrate the critical role of human organizational factors in the control room of an oil and gas pipeline system is also presented.
PL
W pracy przedstawiono wieloletnie zestawienia analiz zagrożeń, awarii i katastrof według ITB, GUNB, Rzeczoznawców Budowlanych, Wyższych Uczelni i PIIB. Omówiono również analizy zagrożeń bezpieczeństwa obiektów budowlanych w 2019 r. z podziałem na okres eksploatacji, rodzaje przyczyn (losowych i obiektywnych), rodzaje obiektów, technologie wykonania, rodzaje zniszczenia, rodzaje materiałów, wysokości i kubatury.
EN
The paper presents summaries of long-term analyses of threats, failures and catastrophes according to ITB, GUNB, Building Experts, Higher Education Institutions and PIIB. It also discusses the analyses of safety hazards of construction objects in 2019 with a breakdown by period of exploitation, types of causes (random and objective) and objects, technologies of execution, types of destruction, types of materials, heights and volumes.
PL
W artykule przedstawiono szacunkowe zestawienia wyników analiz zagrożeń, awarii i katastrof, jakie wystąpiły na terenie Polski w ostatnich 50 latach. Wyniki zestawiono w zależności od charakteru obiektów, technologii wykonania, rodzaju uszkodzeń lub zniszczeń, rodzaju elementów i ich funkcji w konstrukcjach oraz rodzaju materiałów. Wskazano również przyczyny techniczne powstawania zagrożeń, awarii i katastrof wynikające z błędów projektowych i wykonawstwa. Wnioski z analiz powinny stanowić podstawy do innowacyjnych rozwiązań w pracach badawczo-wdrożeniowych.
EN
The paper presents the estimated results of the analyzes risk of failure and building damage that occurred in Poland in the last 50 years. The results were compiled depending on the nature of the objects, technology of execution, the type of damage or destruction, the type elements and their functions in the structures and the type of materials. The technical reasons of risk of failure and building damage resulting from design and execution errors were also indicated. Conclusions from the analyzes should constitute the basis for innovative solutions in research and implementation works.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.