Podaję wyjaśnienie zaskakującej zawodności poznania apriorycznego poprzez odwołanie się do aktywnej obecności wiedzy tła, tacit knowledge, i ukrytych założeń w tym poznaniu oraz przez wskazanie szerszej struktury intelektualnych powiązań pomiędzy intuicyjnymi danymi i przekonaniami w ramach tzw. horyzontu hermeneutycznego. Nieapodyktyczność i praktyczna zawodność rezultatów poznania a priori nie są argumentami przeciwko jego istnieniu i możliwości. Analizy dokonywane są głównie na przykładzie antynomii Russella i aksjomatu komprehensji. Przykładami ukrytych przed-założeń aktywnych w procesie konstytucji poczucia oczywistości towarzyszącego aksjomatowi komprehensji w określonych etapach rozwoju matematyki są ekstensjonalna koncepcja zbioru i przekonanie o jednorodności uniwersum zbiorów.
EN
The surprising fallibility of a priori knowledge is explained by the indication of the broad structure of hermeneutical horizon of intuitive and implicitly accepted intellectual convictions, i.e. the relevant tacit knowledge. Non-apodicticity of the results of a priori cognition cannot be used as an argument against the possibility and existence of the cognition. The analyses are based on the example of Russell’s antinomy and the axiom of comprehension in set theory. The conviction of homogeneity of the universe of sets and extensional conception of a set are examples of presuppositions actively present during the historically given process of the creation of mathematics.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.