In this paper, the authors show the results of numerical simulations representing the test of an aluminum sandwich panel with an auxetic anti-tetrachiral core on an exciter. Steady-state vibration analyses utilizing modal superposition (linear dynamics) were performed. The bottom of the panel had all the degrees of freedom constrained and excitation in form of base acceleration in the vertical direction was applied. The obtained results were in form of contour plots of selected output variables in the frequency domain. In addition, curves showing the variation of acceleration, velocity and displacement of a selected representative point in frequency were generated. The results were compared with those obtained for the panel with a non-auxetic core, in the form of a standard hexagonal honeycomb. It was found that the auxetic panel is not superior in the whole range of frequencies but a workflow useful in the design of sandwich panels for operating conditions involving vibrations was developed.
A fluid interacts with every solid object that is submerged in its flow. In this paper, the dynamic instability of elastic solid is modeled and analyzed based on the benchmark model. It is caused by a continuous stream of vortices (known as von Kármán vortex street). In the presented approach, prerequisites are calculated to meet the necessary conditions for this phenomenon to occur. The main objective of this study is to determine the influence of different Poisson ratios on the intensity of a solid body’s deflection. In the first part, governing equations are presented. The following part describes the model domain as well as assumed parameters with chosen values explanation. The third part presents simulation specific information - mesh and applied options. The conclusion and possible real-life applications are preceded by obtained results.
The example studies a forced response of plate with viscoelastic auxetic damper located at the free end of the plate. Damping elements consist of the cover layer and layer of viscoelastic material with positive or negative Poisson's ratio. Viscoelastic materials are often used for reduction of vibration (seismic or wind induced vibrations in building structures or other structures). The common feature is that the frequency of the forced vibrations is low. Calculations are made using finite element method with Comsol Multiphysics software.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.