Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  automatyzacja sieci
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Nr 2
42--48
PL
PWiK w Gorzowie Wielkopolskim prowadzi wiele działań inwestycyjnych - sieciowych, a także w zakresie automatyzacji oraz oprogramowania. Wychodzimy z założenia, że precyzyjna informacja, połączona z umiejętnością jej wykorzystania w praktyce, przekłada się na jakość i niezawodność świadczonych usług. Nie zapominamy tu także o szkoleniach pracowników.
PL
W ostatnich latach ważnym czynnikiem wpływającym na rozwój sieci teleinformatycznych są metody uczenia maszynowego. Wynika to głównie z dużej konkurencji na rynku usług sieciowych, co pociąga za sobą bezustanną potrzebę jednoczesnego usprawnienia działania sieci komputerowych oraz obniżania kosztów działania sieci komputerowych. W artykule zostaną omówione przykładowe zastosowania metod uczenia maszynowego w sieciach teleinformatycznych. Zostaną przedstawione najnowsze technologie sieci teleinformatycznych, w których stosowane są metody uczenia maszynowego, w tym: automatyzacja sieci oraz koncepcja cyfrowego bliźniaka. Zostaną również zaprezentowane najważniejsze wyzwania związane ze stosowaniem metod uczenia maszynowego w sieciach teleinformatycznych, takie jak: dostęp do danych, potrzeba ciągłej aktualizacji modeli w związku ze zmieniającymi się wzorcami w sieciach, wyjaśnialną sztuczną inteligencję (ang. Explainable Artificial Intelligence).
EN
In recent years, machine learning (ML) methods have been an important factor influencing the development of communications networks. This is mainly due to the high competition in the ICT sector, which entails a relentless need to simultaneously improve the operation of communication computer and reduce the OPEX and CAPEX cost of networks. The paper will discuss examples of applications of machine learning methods in communication networks. The latest networking technologies that use machine learning methods will be presented, including network automation and digital twin. The most important challenges of applying machine learning methods in communication networks will also be described, including: datasets, updating ML models to changing patterns in networks, Explainable Artificial Intelligence. Keywords: communication network, machine learning, optimization, network automation, digital twin. The most important challenges of applying machine learning methods in communication networks will also be describes, including: datasets, updating ML models to changing patterns in networks, Explainable Artificial Intelligence.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.