Dynamically developing visualization techniques based on 3D, CT and MRI scanners require universal image processing algorithms. Image processing procedures include image segmentation process, images taken from different scanners and their visualization. One of the disadvantages of existing algorithms is lack of automated threshold estimating procedures which are crucial for proper image segmentation. The authors focus on modifications of segmentation process, and present universal segmentation algorithm which allows tissues searching without input parameters implementation. The other advantage is possibility of bright object localization not characterized by a significant peak in histogram.
PL
W związku z dynamicznie rozwijającymi się technikami obrazowania danych medycznych pochodzących z różnych typów skanerów 3D, CT, MRI, istnieje zapotrzebowanie na uniwersalne algorytmy przetwarzania obrazu. Przetwarzanie obejmuje przede wszystkim procesy segmentacji obrazów, nakładanie obrazów uzyskanych z różnymi technikami i ich wizualizacja. Autorzy skupili się przede wszystkim na segmentacji obrazów szaro-odcieniowych, reprezentujących obrazy medyczne. Autorzy proponują uniwersalny algorytm segmentacji pozwalający wyszukać tkanki w obrazie bez potrzeby wstępnego określania parametrów. Dodatkową zaletą proponowanego rozwiązania jest możliwość lokalizowania tkanek charakteryzujących się brakiem wyraźnego pliku w histogramie.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.