Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  attribution Qinjiang
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Environmental changes have led to a growing conflict between water supply and demand in Qinjiang River. This paper used the data of monthly rainfall, runoff, evaporation and air temperature during the period from 1956 to 2016 and combined 3-year running mean, linear regression method, Mann–Kendall test and R/S analysis method to analyze the change trend of each factor, combined Mann–Kendall test, cumulative anomaly method and slide t test to analyze the variation of each factor and combined Morlet continuous wavelet analysis to identify periodic oscillations. In this paper, the influences of climate change and human activities on the runoff of the Qinjiang River were qualitatively assessed from the aspects of trend, variation and periodicity and the contributions of climate change and human activities to runoff reduction were quantitatively assessed using evaporation difference method and an improved comparative method of the slope changing ratio of cumulative quantity (SCRCQ).The following results were obtained: (1) From 1956 to 2016, the rainfall showed a weak increasing trend, whereas the runoff depth and the evaporation exhibited significant decreasing trend and the air temperature exhibited a significant increasing trend. The rainfall and air temperature will continuously increase, whereas runoff and evaporation will continuously decrease in the future. (2) Rainfall exhibited no significant variation, whereas there were two variation points (1986 and 2003) in the runoff, three variation points (1974, 1986 and 2011) in evaporation and one variation point (1996) in air temperature. (3) Features of rainfall exhibited similarities to periodic changes in runoff, whereas rainfall exhibited significant difference with evaporation and air temperature. (4) Human activities contributed mainly to the runoff reduction. The contribution of human activities to runoff reduction increased from 43.78 to 61.17% in BR period (1983–2003) and increased from 61.17 to 72.66% in CR period (2004–2016). This indicated that the contribution of human activities to runoff reduction increased continuously. The impact of human activities on the reduction in runoff in the Qinjiang River Basin is mainly due to the irrigation, industrial and urban residents’ water use, which is caused by the growth of population and the growth of economic index.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.