Simultaneous measurements of bubble density in the sea subsurface and positive ions in the lower atmosphere were performed in the Baltic Sea in the summer of 1999. Bubbles in two size ranges, around 27 and 100 žm, were measured acoustically. Airborne positive charge was measured with a Gerdien instrument. Observed concentrations of air ions varied from 60 cm-3 up to 600 cm-3. The relative role of bubbles and wind speed on the positive air ion concentrations over the brackish water of the Baltic Sea is discussed. The parameters of a model of a log-log dependence between charge concentration and bubble density are calculated. The correlation functions between time series of concentrations of positive charges over the sea and gas bubbles averaged over a depth range from 0.4 to 4 m and wind speed are presented. There was zero lag between the cross-correlation maxima of charge and bubbles, but there was a phase lag of one and a half hours between charge and wind speed.
Simultaneous measurements of bubble density in the sea subsurface and positive ions in the lower atmosphere were performed in the Baltic Sea in the summer of 1999. Bubbles in two size ranges, around 27 and 100 μm, were measured acoustically. Airborne positive charge was measured with a Gerdien instrument. Observed concentrations of air ions varied from 60 cm−3 up to 600 cm−3. The relative role of bubbles and wind speed on the positive air ion concentrations over the brackish water of the Baltic Sea is discussed. The parameters of a model of a log-log dependence between charge concentration and bubble density are calculated. The correlation functions between time series of concentrations of positive charges over the sea and gas bubbles averaged over a depth range from 0.4 to 4 m and wind speed are presented. There was zero lag between the cross-correlation maxima of charge and bubbles, but there was a phase lag of one and a half hours between charge and wind speed.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Atmospheric electricity measurements are performed all over the globe for getting a better understanding of the processes and phenomena operating in the Earth’s electric atmosphere, ionosphere and magnetosphere. Over recent years, we have established coordinated observations of atmospheric electricity, mainly of the vertical component of the Earth’s atmospheric electric field, from Polish observation stations: Stanisław Kalinowski Geophysical Observatory in Świder, Poland, Stanisław Siedlecki Polar Station in Hornsund, Svalbard, Norway, and, for the first time, the Henryk Arctowski Antarctic Station in King George Island. The organisation of this network is presented here as well as a preliminary summary of geophysical conditions at Arctowski, important from the point of view of atmospheric electricity observations. In particular, we refer to the geomagnetic observations made at Arctowski station in 1978-1995. We also present the average fair-weather diurnal variation of the atmospheric electric field based on observations made so far between 2013 and 2015.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.