Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  assistive technologies
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Brain-Computer Interface (BCI) allows for non-muscular communication with external world, which may be the only way of communication for patients in a locked-in state. This paper presents a complete software framework for BCI, a novel hardware solution for stimuli rendering in BCIs based on Steady State Visual Evoked Potentials (SSVEP), and a univariate algorithm for detection of SSVEP in the EEG time series. OpenBCI is a complete software framework for brain-computer interfaces. Owing to an open license and modular architecture, it allows for flexible implementations of different communication channels in the serial or parallel hybrid mode, minimization of costs and improvements of stability and efficiency. Complete software is freely available from http://openbci.pl. BCI Appliance is a hardware solution that allows for dynamic control of menus with stable generation of stimuli for the SSVEP paradigm. The novelty consists of a design, whereby the LCD screen is illuminated from behind using an array of LEDs. Design pioneers also proposed a new line of thought about the user-centered design of BCI systems: a simple box with one on/off button, minimum embedded software, wireless connections to domotic and EEG acquisition devices, and user-controlled mode switching in a hybrid BCI.
EN
Tongue machine interface (TMI) is a tongue-operated assistive technology enabling people with severe disabilities to control their environments using their tongue motion. In many disorders such as amyotrophic lateral sclerosis or stroke, people can communicate with the external world in a limited degree. However, they may be disabled, while their mind is still intact. Various tongue–machine interface techniques has been developed to support these people by providing additional communication pathway. In this study, we aimed to develop a tongue–machine interface approach by investigating pattern of glossokinetic potential (GKP) signals using neural networks via simple right/left tongue touchings to the buccal walls for 1-D control and communication, named as GKP-based TMI. As can be known in the literature, the tongue is connected to the brain via hypoglossal cranial nerve. Therefore, it generally escapes from the severe damages, in spinal cord injuries and was slowly affected than limbs of persons suffering from many neuromuscular degenerative disorders. In this work, 8 male and 2 female naive healthy subjects, aged 22 to 34 years, participated. Multilayer neural network and probabilistic neural network were employed as classification algorithms with root-mean-square and power spectral density feature extraction operations. Then the greatest success rate achieved was 97.25%. This study may serve disabled people to control assistive devices in natural, unobtrusive, speedy and reliable manner. Moreover, it is expected that GKP-based TMI could be a collaboration channel for traditional electroencephalography (EEG)-based brain computer interfaces which have significant inadequacies arisen from the EEG signals.
EN
The paper presents an evolutionary multi-objective approach to automatically generate morphological filters to solve unknown distances areas, found in depth images used by real-time embedded systems for visually impaired people, and to prevent accidents. It was used Cartesian Genetic Programming as base for the NSGAII multi-objective optimization algorithm proposed to optimize two objectives: low error rates for quality x low complexity for speed. Results showed this approach was able to deliver feasible solutions with good quality and speed to be used in real-time systems.
PL
W artykule zaprezentowano metodę ewolucyjną do automatycznego generowania morfologicznego filtru do określania brakujących danych w obrazach ludzi otrzymywanych on-line. Użyto programu Cartesian Genetic do optymalizacji algorytmu. Zastosowane rozwiązanie umożliwiało dostarczanie poprawę szybkości o dokładności przetwarzania obrazu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.