The paper compares global end local approximation methods used in inverse problems. Global approximators are represented by feedforward multilayer neural network (FFNN); local approximators are represented by Locally Weighted Regression (LWR) and Receptive Field Weighted Regression (RFWR).
PL
W artykule porównano metody globalnej i lokalnej aproksymacji w zagadnieniach odwrotnych. Aproksymatory globalne reprezentuje wielowarstwowa sieć neuronowa ze sprzężeniem do przodu (FFNN), natomiast aproksymatory lokalne regresja lokalnie ważona (LWR) oraz regresja ważona pola otwartego (RFWR).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.