While natural anthracycline antibiotics retain their position of clinically important antitumor drugs despite of serious side effects, much effort is directed towards their improvement by rational structural changes. Most of useful anthracycline antibiotics chemistry is done by dissconnection - modification approach, folloved by de novo glycosidic bond assembly. It is pointed out that 1,2- and 2,3-unasturated pyranosides constitute an important class of intermediates, useful for synthesis of natural and modified antibiotic aminosugars. Glycals derived from 3-amino-2,3,6-trideoxypyranoses and their 1-O-silylated derivatives are useful glycosyl donors for a variety of alcohols. Also anthracycline antibiotics can be obtained from them in simple preparative procedures which are amenable for scale up and technical process development. Moreover, unsaturated pyranoses from 6-deoxy-L- configurational series are useful chiral precursors for anthracycline aglycons synthesis. Remarkably, various synthetic schemes comprising anthracycline antibiotic sugars, aglycons and new synthetic analogues can be traced down to the single common precursor: 3,4-di-O-acetyl-L-rhamnal, easily obtained from a commodity chemical (raw material in food industry) L-rhamnose.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW