Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 133

Liczba wyników na stronie
first rewind previous Strona / 7 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  antioxidative enzyme
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 7 next fast forward last
|
|
tom 49
|
nr 1
95-101
EN
The effects of different concentrations (10-5 M, 10-4 M. 10-3 M) of Cu2+ on growth, antioxidant enzyme activity and malondialdehyde (MDA) content were investigated in hydroponically grown Allium sativum L. The results indicated that the growth of garlic seedlings was not inhibited under treatment with 10-5 M Cu2+. Garlic seedlings exposed to 10-4 M and 10-3 M Cu2+ exhibited significant growth reduction. With increasing Cu2+ concentration and treatment time, superoxide dismutase (SOD) activity increased in leaves and roots, and peroxidase (POD) activity increased in leaves. In roots of plants exposed to 10-4 M and 10-3 M Cu2+, POD activity increased within 9 d and then dropped, but was still higher than in the control at the end of the experiment. Catalase (CAT) activity increased in seedlings grown at 10-5 M and l0-4 M, whereas a highly toxic level of Cu2+ (10-3 M) markedly inhibited CAT activity. SOD and POD activity were higher in roots than in leaves, whereas CAT activity was higher in leaves than in roots under both control and Cu2+ treatments. There was no obvious effect on MDA content in the seedlings treated with 10-5 M Cu2+; at 10-4 M and 10-3 M Cu2+ it increased. The mechanisms of Cu2+ toxicity and Cu2+ tolerance in garlic are briefly discussed.
EN
Cardiovascular ageing is associated with an increase in cardiac susceptibility to ischaemia and reperfusion and production of reactive oxygen species has been suspected to be responsible for this age-associated particular vulnerability. To determine whether administration of antioxidant treatment could afford some protection against ischaemia and reperfusion during aging, isolated perfused hearts from adult and senescent rats were submitted to normoxia (180 min), prolonged low-flow ischaemia (15% of initial coronary flow;180 min) or low-flow ischaemia/reperfusion (45 min/30 min), without or with antioxidant enzymes (superoxide dismutase+catalase; 50IU/ml). Contractile function and coronary perfusion were measured and protein oxidation was quantitated in left ventricle after normoxia, ischaemia and ischaemia/reperfusion. Protein oxidation was higher in senescent than in adult hearts after ischaemia-reperfusion, in contrast to prolonged ischaemia. During prolonged ischaemia, antioxidant treatment prevented coronary vasoconstriction at both ages and delayed contractile dysfunction in senescent hearts but did not limit protein oxidation. During reperfusion, antioxidant treatment prevented coronary vasoconstriction and protein oxidation at both ages and considerably improved recovery of contractile function in senescent hearts. In conclusion, antioxidant treatment fully protects the senescent heart against ischaemia/reperfusion but not against prolonged ischaemia injury, indicating that oxidative stress plays a central role in the age-associated vulnerability to ischaemia-reperfusion.
EN
The study was designed to assess the antioxidant defense mechanisms, either enzymatic or non-enzymatic, in a group of sixteen centenarians (one male and fifteen female subjects aged 101 to 105 years) living in the Upper Silesia district (Poland) in order to evaluate the potential role of antioxidant defenses in human longevity. The results of our preliminary study showed that in comparison with young healthy female adults the centenarians had significantly higher red blood cell glutathione reductase and catalase activities and higher, although insignificantly, serum vitamin E level.
EN
Studies have shown that reactive oxygen metabolites and lipid peroxidation play important roles in ischemia-reperfusion injury in many organs such as heart, brain and stomach. The aim of this study is to evaluate the antioxidant effect of L-carnitine on gastric mucosal barrier, lipid peroxidation and the activities of antioxidant enzymes in rat gastric mucosa subjected to ischemia-reperfusion injury. Rats were subjected to 30 min of ischemia followed by 60 min of reperfusion. L-carnitine (100 mg/kg), was given to rats intravenously five minutes before the ischemia. In our experiment, lesion index, thiobarbituric acid reactive substances, prostaglandin E2 and mucus content in gastric tissue were measured. The results indicated that the lesion index and the formation of thiobarbituric acid reactive substances increased significantly with the ischemia-reperfusion injury in the gastric mucosa. L-carnitine treatment reduced these parameters to the values of sham operated rats. The tissue catalase and superoxide dismutase activities and prostaglandin E2 production decreased significantly in the gastric mucosa of rats exposed to ischemia-reperfusion. L-carnitine pretreatment increased the tissue catalase activity and prostaglandin E2 to the levels of sham-operated rats but did not change superoxide dismutase activity. There were no significant difference in glutathione peroxidase activity and mucus content between the groups in the gastric mucosa. In summary, L-carnitine pretreatment protected gastric mucosa from ischemia-reperfusion injury by its decreasing effect on lipid peroxidation and by preventing the decrease in prostaglandin E2 content of gastric mucosa.
|
1998
|
tom 20
|
nr 1
EN
Phaseolus aureus Roxb. was exposed to Hg and Cd separately at different stages/ages of its development, viz. seed germination stage and seedling stages (4th and 6th day). The responses, besides being metal specific, were also age-dependent. The root growth study at germination stage treatment (GST) revealed Hg to be more toxic than Cd, but, in contrast, at seedling stage treatment (SST) with seedlings more than 5 days old, while Cd killed all the seedlings at 30 µM concentration, Hg did not even at 200 µM. Among the enzymes studied, catalase showed greater metal specific and age-dependent responses than the peroxidases. Both the metals significantly increased the levels of chlorophylls and carotenoids at GST (25 µM Hg/Cd) and 4th day SST (20 µM Hg/Cd), but not at 6th day SST (20 µM Hg/Cd). The photosynthetic O₂ evolution rate expressed as per unit chlorophyll (chl) decreased irrespective of the treatment stages, and also the metals; however, when expressed as per unit f. w., it was inhibited only at 6th day SST, exclusively by Cd. It seems that plants, unlike animals, are capable of facing challenges of metals more at younger than at older stages of their development, probably by mechanisms very different from those genetically controlled.
first rewind previous Strona / 7 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.