An analytical description of the strength of singularity at the tip of an orthotropic wedge embedded into an infinite two-dimensional elastic orthotropic body was considered. The considerations were restricted to the wedges symmetrically oriented with respect to the axes of orthotropy. Mixed boundary value conditions were assumed, continuity of both, tractions and displacements at the interfaces were demanded. Only singularities of the type r(-[lambda]), where [lambda] is a real number corresponding to finite elastic energy in the vicinity of the wedge tip (0 < [lambda] <1), were taken into considerations. The order of singularity [lambda] changes with the wedge opening angle [psi]. Relations [lambda] - [psi] for different sets of elastic constants have been studied. For the case of nearly isotropic materials, two modes of stress distribution with different values of [lambda]: symmetric and skew-symmetric were found. The quantitative results roughly repeated those obtained by the authors for isotropic materials where the symmetries of solutions were assumed in advance.
PL
Rozważano opis analityczny rzędu osobliwości w otoczeniu wierzchołka ortotropowego klina zanurzonego w skończonym dwuwymiarowym ortotropowym ciele sprężystym. Rozpatrzono przypadek klina symetrycznego zorientowanego zgodnie z osiami ortotropii. Mieszane warunki brzegowe narzucają ciągłość naprężeń i przemieszczeń na płaszczyznach podziału. Ograniczono się do rozważań rzędu osobliwości r(-[lambda]), odpowiadającego skończonej wartości energii sprężystej w otoczeniu wierzchołka klina (0 <[lambda]< 1). Rząd osobliwości [lambda] zmienia się ze zmianą kąta rozwarcia klina. Zbadano przebiegi zmienności [lambda] przy różnych kombinacjach stałych sprężystych. Dla przypadku prawie izotropowego wykryto dwa rozkłady naprężeń z różnymi wartościami [lambda]: symetryczne i antysymetryczne. Wyniki ilościowe są bliskie otrzymanym przez autorów dla materiałów izotropowych, gdzie symetria pól naprężeń była założona z góry.
The problem to find an optimal distribution of elastic moduli within a given plane domain to make the compliance minimal under the condition of a prescribed value of the integral of the trace of the elastic moduli tensor is called the free material design with the trace constraint. The present paper shows that this problem can be reduced to a new problem of minimization of the integral of the stress tensor norm over stresses being statically admissible. The eigenstates and Kelvin’s moduli of the optimal Hooke tensor are determined by the stress state being the minimizer of this problem. This new problem can be directly treated numerically by using the Singular Value Decomposition (SVD) method to represent the statically admissible stress fields, along with any unconstrained optimization tool, e.g.: Conjugate Gradient (CG) or Variable Metric (VM) method in multidimensions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.