We study a property of smallness of sets which is stronger than the possibility of packing the set into arbitrarily small balls (i.e., being Tarski null) but weaker than paradoxical decomposability (i.e., being a disjoint union of two sets equivalent by finite decomposition to the whole). We show, using the Axiom of Choice for uncountable families, that there are Tarski null sets which are not small sets. Using only the Principle of Dependent Choices, we show that bounded subsets of Rn that are included in countable unions of proper analytic subsets of Rn are small, and several related results.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a σ-ideal I of sets in a Polish space X and for A ⊆ $X^2$, we consider the generalized projection 𝛷(A) of A given by 𝛷(A) = {x ∈ X: A_x ∉ I}, where $A_x$ ={y ∈ X: 〈x,y〉∈ A}. We study the behaviour of 𝛷 with respect to Borel and analytic sets in the case when I is a $∑_{2}^{0}$-supported σ-ideal. In particular, we give an alternative proof of the recent result of Kechris showing that 𝛷 [$∑_{1}^{1}(X^2)]=∑_{1}^{1}(X)$ for a wide class of $∑_{2}^{0}$-supported σ-ideals.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.