Let Γ2 denote the space of all prime sense double entire sequences and Λ2 the space of all prime sense double analytic sequences. This paper is devoted to the general properties of Γ2.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let x2 denotes the space of all double gai sequences. Let 2denotes the space of all double analytic sequences. This paper is devoted to a study of the general properties of Nörlund double Orlicz space of gai sequence space ŋ (x2M) and x2M and Nörlund double Orlicz space of analytic sequence space ŋ (ᴧ2M) and 2M).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we define some new sequence spaces and give some topological properties of the sequence spaces ...[wzór] and investigate some inclusion relations.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let Γ2 denote the spaces of all double entire sequences. Let Λ2 denote the spaces of all double analytic sequences. This paper is devoted to a study of the general properties of Nörlund double entire sequence space η (Γ2), Γ2 and also study some of the properties of η (Γ2) and η Λ2.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we introduce the sequence spaces x2m(p, q, u), using an modulus function M and defined over a semi normed space (X, q); semi normed by q. We study some properties of these sequence spaces and obtain some inclusion relations.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let χ2 denote the space of all prime sense double gai sequences and Λ2 the space of all prime sense double analytic sequences. This paper is devoted to the general properties of χ2.
Mursaleen introduced the concepts of statistical convergence in random 2-normed spaces. Recently Mohiuddine and Aiyup defined the notion of lacunary statistical convergence and lacunary statistical Cauchy in random 2-normed spaces. In this paper, we define and study the notion of lacunary statistical convergence and lacunary of statistical Cauchy sequences in random on χ2 over p- metric spaces dfined by Musielak and prove some theorems which generalizes Mohiuddine and Aiyup results.
We generalized the concepts in probability of rough Cesàro and lacunary statistical by introducing the difference operator Δ[αγ] of fractional order, where α is a proper fraction and γ = (γmnk) is any fixed sequence of nonzero real or complex numbers. We study some properties of this operator involving lacunary sequence θ and arbitrary sequence p = (prst) of strictly positive real numbers and investigate the topological structures of related with triple difference sequence spaces. The main focus of the present paper is to generalized rough Cesaro and lacunary statistical of triple difference sequence spaces and investigate their topological structures as well as some inclusion concerning the operator Δ[αγ].
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.