Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  analiza wydychanego powietrza
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Mikroprocesorowy czujnik CO2
100%
PL
W artykule omówiono celowość zastosowania sensora CO2 do wykrywania biomarkerów chorobowych w wydychanym powietrzu. Opracowana została procedura wydzielenia najbardziej interesującej do celów badawczych III fazy wydechu, oraz komunikacji z układem kondycjonowania próbek gazowych. Do realizacji zadania wykorzystano platformę programistyczną Arduino bazującą na mikrokontrolerze AVR.
EN
This paper presents the concept and practice realisation of the CO2 sensor for detection of biomarkers in exhaled air. There had been developed procedure for determination and separation of the most interesting for research purposes phase III of exhalled breath and communication with gas sample conditioning system. For the realisation used Arduino software platform were used, based on AVR microcontroller.
2
Content available remote Wykorzystanie technologii GLAD do zastosowań w przenośnych analizatorach oddechu
100%
PL
W pracy przedstawione zostały najważniejsze parametry technologii osadzania pod kątem GLAD (ang. Glancing Angle Deposition) z wykorzystaniem magnetronowego rozpylania jonowego w celu wytwarzania półprzewodnikowych, rezystancyjnych czujników gazów przeznaczonych do zastosowania w układach elektronicznego nosa (ang. e-nose) do analizy wydychanego powietrza.
EN
In this paper, the major parameters of the GLAD (Glancing Angle Deposition) technique with the utilization of the magnetron sputtering technology were presented. The GLAD technology was applied to deposition of resistive, semiconductor type gas sensors that will be applied to electronic nose (e-nose) for exhaled breath analysis in a portable device.
3
Content available Oddech codzienny
84%
EN
The odor of human body has facilitated diagnosis for a long time. Sniffing the body, breath, urine and even feces became one of the useful methods in ancient medicine. For centuries, the sweet smell of the breath was associated with diabetes, the fishy smell was associated with liver disease, measles was associated with the smell of feathers, typhoid with the smell of fresh bread, and tuberculosis with stale beer. Hippocrates also linked the smell of the human body and disease, claiming that the smell of a sick person is different from that of a healthy one. He classified the characteristic odors of the body into sweet, musty, fishy and rotten. The father of chemical analysis of breath was Antonie Lavoisier, who found that carbon dioxide is exhaled by guinea pigs. The pioneer of modem breath analysis was Linus Pauling, who in 1971 presented the results of breath studies using gas chromatography (GC), showing the presence of over 200 substances. Exhaled air containing approximately 78% N2, 17% OSub>2, 3% CO2 and up to 6% water vapor. The exact concentrations of individual inorganic gases depend on many factors, mainly physical exercise, cardiac output, and lung ventilation. A mixture of many volatile organic compounds is a much smaller group of substances at concentrations 100 ppm. The substances in the breath can come from human metabolism and enter into the body by inhaled air and food. Volatile organic compounds present in the breath that can be divided into different chemical classes e.g. saturated hydrocarbons (ethane, pentane, aldehydes), unsaturated hydrocarbons (isoprene), ketones (acetone), sulfur-containing compounds (methyl mercaptan, dimethyl sulfide, dimethyl disulphide, carbon disulphide, carbonyl sulphide) and containing nitrogen (amines). Endogenous substances in the breath can be used to track physiological and pathological processes in the body. Chemical analysis of the breath can provide information regarding biochemical processes in the organism and human health. Compared to many medical diagnostic methods, it is painless, non-invasive and safe. Nowadays, the main purpose of breath analysis is to identify volatile organic compounds that can be used as markers of various diseases. Research focused on detection of lung cancer based on specific volatile organic compounds in the exhaled air is carried out in many laboratories. Rapid and non-invasive methods for early detection of lung cancer and chronic obstructive pulmonary disease is crucial for early diagnosis. This mini review presents background of breath, briefly describes main volatiles, their biochemical origin as well as potential application of exhaled gases analysis.
4
Content available remote MOX based E- nose for non-invasive biomedical applications
84%
EN
The non-invasive method to diagnosis any disease is an attractive topic of research due to its rapid, cost effective, convenient and efficient technique. The Health status of a patient can be directly known by examined of volatile organic compound (VOC) of a patient, and this VOC can be studied by an electronic nose (e-nose). E- Nose can be easily detect different types of diseases such as lung cancer, diabetics, by analyzing the exhaled breath of a patient. In the proposed work, a brief overview has been provided about different techniques used to develop the E-nose. The importance of Low temperature co-fired ceramics (LTCC) based breath analyzer and future objectives has discussed.
PL
EW artykule przedstawiono koncepcję wykorzystania analizatora zapachów tzw. E-nosa do wykrywania chorób na podstaiw badania wydychanego powietrza. Przedstawiono różne techniki analizy. Szczególną uwagę poświecono czujnikowi typu LTCC.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.