W pracy porównano właściwości dwóch liniowych metod (PCA i LDA) pozwalających na redukcję wymiarów w trakcie analizy cech oraz zbadano wydajność tych dwóch algorytmów w procesie klasyfikacji wybranego materiału biologicznego na podstawie jego wzbudzeniowo-emisyjnych matryc fluorescencyjnych. Stwierdzono, że metoda LDA redukuje liczbę wymiarów (znaczących zmiennych) bardziej efektywnie niż metoda PCA. Za pomocą algorytmu LDA udało się uzyskać względnie dobre rozróżnienie badanego materiału biologicznego.
EN
Quality of two linear methods (PCA and LDA) applied to reduce dimensionality of feature analysis is compared and efficiency of their algorithms in classification of the selected biological materials according to their excitation-emission fluorescence matrices is examined. It has been found that LDA method reduces the dimensions (or a number of significant variables) more effectively than PCA method. Arelatively good discrimination within the examined biological material has been obtained with the use of LDA algorithm.