Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 100

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  alkaline phosphatase
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
Introducing collagen, which is basic ingredient of bone tissue, into the structure of chitosan gels which are formed at the physiological body temperature, is aimed at creating the so-called biomimetic structures, i.e. close in their composition to the natural composition of bone tissue. Within the research the influence of collagen on structural properties of thermosensitive chitosan gels and the influence of ALP on structural properties of chitosan and chitosan-collagen gels was determined.
EN
Several mammalian enzymes are anchored to the outer surface of the plasma membrane by a covalently attached glycosylphosphatidylinositol (GPI) structure. These include acetylcholinesterase, alkaline phosphatase (AP) and 5'-nucleotidase among other enzymes. Recently, it has been reported that these membrane enzymes can be released into the serum by the GPI-dependent phospholipase D under various medical disturbances such as cancer and/or by chemical and physical manipulation of the biological systems. Treatment of MCF-7 cells with two consecutive effective concentrations of 3-hydrogenkwadaphnin (3-HK, 3 nM) for 48 h enhanced membrane AP activity by almost 330% along with a 40% reduction in the AP activity of the cell culture medium. In addition, our data indicate that 3-HK is capable of inducing mainly the tissue-nonspecific alkaline phosphatase (TNAP) isoenzyme, along with enhancing its thermostability. These findings, besides establishing a correlation between the antiproliferative activity of 3-HK and the extent of plasma membrane AP activity, might assist in the development of new diagnostic tools for following cancer medical treatments.
EN
In adult life, proper bone metabolism requires efficient regulation of bone formation and resorption processes. Bone turnover markers allow for assessing the rate of bone formation and resorption processes. In menopausal period, female patients experience gradual reduction in blood estradiol levels. The deficit of estrogens leads to enhanced osteoclastogenesis and bone resorption. Alkaline phosphatase (ALP) is a membranebound enzyme that stimulates the osteoblast activity and bone mineralization. It is synthesized by osteoblasts and incorporated into the newly formed bone tissue. The produced enzyme stimulates the osteoblast activity and bone mineralization. The goal of this study is to determine the effect of hormone replacement therapy in postmenopausal women on the expression of alkaline phosphatase gene (ALPL) within the mucosal epithelium of the cheek and in peripheral blood lymphocytes. The studies show that hormone replacement therapy has no significant effect on the increase in ALPL expression within the mucosal epithelium of the cheek. Only in women having undergone ovarectomy (OV), the epithelial ALPL expression level was higher than in the remaining groups.
6
Content available remote The roles of annexins and alkaline phosphatase in mineralization process.
88%
EN
In this review the roles of specific proteins during the first step of mineralization and nucleation are discussed. Mineralization is initiated inside the extracellular organelles-matrix vesicles (MVs). MVs, containing relatively high concentrations of Ca2+ and inorganic phosphate (Pgi), create an optimal environment to induce the formation of hydroxyapatite (HA). Special attention is given to two families of proteins present in MVs, annexins (AnxAs) and tissue-nonspecific alkaline phosphatases (TNAPs). Both families participate in the formation of HA crystals. AnxAs are Ca2+- and lipid-binding proteins, which are involved in Ca2+ homeostasis in bone cells and in extracellular MVs. AnxAs form calcium ion channels within the membrane of MVs. Although the mechanisms of ion channel formation by AnxAs are not well understood, evidence is provided that acidic pH or GTP contribute to this process. Furthermore, low molecular mass ligands, as vitamin A derivatives, can modulate the activity of MVs by interacting with AnxAs and affecting their expression. AnxAs and other anionic proteins are also involved in the crystal nucleation. The second family of proteins, TNAPs, is associated with Pi homeostasis, and can hydrolyse a variety of phosphate compounds. ATP is released in the extracellular matrix, where it can be hydrolyzed by TNAPs, ATP hydrolases and nucleoside triphosphate (NTP) pyrophosphohydrolases. However, TNAP is probably not responsible for ATP-dependent Ca2+/phosphate complex formation. It can hydrolyse pyrophosphate (PPi), a known inhibitor of HA formation and a byproduct of NTP pyrophosphohydrolases. In this respect, antagonistic activities of TNAPs and NTP pyrophosphohydrolases can regulate the mineralization process.
EN
A new method based on combined atomic force microscopy (AFM) and fluorescence microscopy observations, is proposed to visualize the insertion of glycosylphosphatidyl inositol (GPI) anchored alkaline phosphatase from buffer solutions into supported phospholipid bilayers. The technique involves the use of 27 nm diameter fluorescent latex beads covalently coupled to the amine groups of proteins. Fluorescence microscopy allows the estimation of the relative protein coverage into the membrane and also introduces a height amplification for the detection of protein/bead complexes with the AFM. The coupling of the beads with the amine groups is not specific; this new and simple approach opens up new ways to investigate proteins into supported membrane systems.
EN
Kinetic isotope effects have been measured for the aqueous hydrolysis reactions of p-nitrophenyl phosphorothioate (pNPPT) and the diester ethyl p-nitrophenyl phosphorothioate, and for the alkaline phosphatase-catalyzed reaction with pNPPT. The results show that the transition states of the uncatalyzed reactions of the phosphorothioate mono- and diesters are very similar to those of the corresponding phosphate ester reactions. The secondary 18O nonbridge isotope effects in reactions of phosphate esters become more normal as the mechanism changes from dissociative, metaphosphate-like to associative, phosphorane-like. The opposite trend occurs in phosphorothioate esters, due to differences in the relative contributions of bond-order changes and bending modes to this isotope effect. The KIEs for the alkaline phosphatase-catalyzed reaction of pNPPT are most consistent with a tight, triester-like transition state, probably a result of perturbations resulting from the larger size of sulfur that lead to a nucleophile attack angle that is unfavorable for an in-line process with a loose transition state.
PL
Fosfataza alkaliczna (ALP), enzym odgrywający rolę w mineralizacji kości, został związany wewnątrz kleistego hydrożelu chemicznie zbliżonego do białek omulków, składającego się z glikolu katecholo-polyetylenowego (cPEG). Następnie, przygotowane hydrożele zostaly zanurzone w roztworze glycerofosforanu wapniowego (CaGP) w celu ich zmineralizowania i poprzez to polepszenia ich przydatności jako materiał zastępczy kości. Związany ALP zachował swoją bioaktywność i przyczynił się do tworzenia materialu podobnego do apatytu wewnątrz cPEG-żelów. Ilość tego materiału oraz wytrzymałość mechaniczna wzrastały zarówno wraz ze zwiększeniem okresu inkubacyjnego jak i stężenia fosfatazy. Wyniki pokazują zasadę dzialania mineralizacji za pośrednictwem fosfatazy ALP.
EN
Alkaline Phosphatase (ALP), an enzyme involved in mineralization of bone, was incorporated into mussel protein-inspired adhesive hydrogels consisting of catechol-polyethylene glycol (cPEG) and incubated in calcium glycerophosphate (CaGP) solution to induce their mineralization with a view to improving their suitability as materials for bone replacement. Incorporated ALP retained its bioactivity and induced formation of apatite-like material within cPEG gels which rose with increasing incubation time and ALP concentration, as well as an increase in mechanical strength. The results prove the principle of ALP-mediated enzymatic mineralization.
10
75%
EN
Lansoprazole, a known H/K+-ATPase inhibitor, is currently used as a therapeutical option for the initial treatment of gastroesophageal reflux disease. Recently, lansoprazole has been found to be an inhibitor of cytosolic PHOSPHO1 (a phosphatase which hydrolyses phosphocholine and phosphoethanolamine), providing a possible therapeutical target to cure pathological mineralization. Since PHOSPHO1 is present inside matrix vesicles, we tested the effect of lansoprazole on matrix vesicles containing several key enzymes for the mineralization process including tissue-nonspecific alkaline phosphatase. We found that lansoprazole can inhibit in an uncompetitive manner tissue-nonspecific alkaline phosphatase. A Ki value of 1.74 ± 0.12 mM has been determined for the inhibition of tissue-nonspecific alkaline phosphatase by lansoprazole. Lansoprazole, currently used for treating gastroesophageal disease, by inhibiting PHOSPHO1 and tissue-nonspecific alkaline phosphatase could prevent hydroxyapatite-deposition disease and could serve as an adjunct treatment for osteoarthritis.
EN
PCL (poly-ε-caprolactone) is a biocompatible and biodegradable polymer of aliphatic polyester group. However, PCL does not effectively bind to the bone in contrast to bioactive inorganic compounds such as wollastonite. For this wollastonite (WS) is regarded as a potential bioactive material for bone tissue engeenering although its main drawback is brittlennes. Therefore we synthesized polymer nanocomposite materials composed of poly-ε-caprolactone and wollastonite (PCL/wollastonite) containing either 0.5% or 5% of the latter modifying filler. And we aimed to verify biological properties of the nanocomposite PCL/WS materials, in comparison to the pure PCL, on cultures of osteoblast-like cells MG-63. The study revealed that the adherence of the osteoblast-like cells to the tested materials was enhanced by the PCL modification (PCL/5WS > PCL/0.5WS > PCL) while cell viability/proliferation was not altered. Furthermore, the activity of alkaline phosphatase indicative of osteoblast differentiation (maturation) was enhanced when the cells were cultured with either PCL/5WS or PCL/0.5WS. Overall, our results indicate that PCL-modified wollastonite improves biological properties of the basic biomaterial suggesting its potential usefulness/application for the bone tissue regeneration.
13
Content available Remediation of soil contaminated with cadmium
75%
EN
The search for the best solutions to restore soil balance is essential for attaining a stable and sustainable agricultural development worldwide. This research, which makes a contribution to these investigations, focuses on four substances (two innovative ones: basalt flour, brown algal extract, and two classic soil improvers: finely ground barley straw and compost) which can potentially alleviate the inhibitory effect of Cd2+ on the soil environment. The following were analyzed: the activity of acid phosphatase and alkaline phosphatase, counts of Pseudomonas sp., cellulolytic bacteria, copiotrophic bacteria and copiotrophic spore-forming bacteria, and the yield of spring barley. Cadmium (Cd2+) was applied as CdCl2 · 2.5H2O in the following doses: 0, 4, 40, 80, 120, 160, and 200 mg Cd2+ kg-1 of soil. For a more complete assessment of the soil, its biochemical properties and the counts of microorganisms were scrutinized with the following indices: RS – soil resistance, R:S – rhizosphere effect and EF – fertilization effect of the contamination alleviating substances. It was found that alkaline phosphatase is more sensitive to cadmium contamination of the soil than acid phosphatase. Cadmium did not exert any inhibitory effect on the number of microorganisms present or the yield of spring barley. Cellulolytic bacteria were the least sensitive to stress associated with the accumulation of high cadmium doses in the soil, whereas copiotrophic bacteria were the most sensitive microorganisms to the above stressor. The ability of cadmium-polluted soil to restore homeostasis depended on the type of a soil improver and the level of soil contamination. Negative consequences of cadmium pollution were effectively mitigated by straw, but less so by brown algal extract and basalt flour.
14
Content available remote Aktywność alkalicznych fosfataz w wodach estuarium Odry
75%
EN
In this paper, immunosensors based on electrochemical (potentiometric and amperometric) detection are presented. We developed ISFET type potentiometric immunosensor with urease as a label and a screen-printed amperometric immunosensor with alkaline phosphatase, utilizing ascorbic acid phosphate as a substrate. For the free alkaline phosphatase in concentration range 35-3500 pM, the response of amperometric sensors was at the level from 10 to 80 miA. It was stated that the potentiometric immunosensors can be applied for measurements of the to tal gamma-globulin concentration or for detection of gamma the selected IgG in concentration range 1.37 mg/L-4 g/L.
EN
The aim of the study has been to determine the effect of soil contamination with zinc on the activity of soil enzymes. The study consisted of two laboratory experiments. Same, light loamy soil of pH 7.1, was used in both experiments. The variables in the first experiment were: a degree of soil contamination with zinc in mg Zn kg-1 d.m. of soil: 0, 5, 500, 1000, 1500 and 2000; dose of cellulose in g kg-1 d.m. of soil: 0, 15, and time of soil incubation (15 – 120 days). In the second experiment the following variables were tested: the degree of soil contamination with zinc in mg Zn kg-1 d.m. of soil: 0, 1000 and 2000; soil pH: 7.1, 6.4 and 5.5, and the time of soil incubation (15 – 120 days). The results of the experiments demonstrated that contamination of soil with zinc led to depressed activity of dehydrogenases, urease, acid phosphatase and alkaline phosphatase. Dehydrogenases and urease appeared to be more vulnerable to zinc contamination than phosphatases. The soil enzymes were adversely affected not only by zinc contamination but also by increasing soil acidity. According to their vulnerability to soil acidity the soil enzymes can be ordered as follows: dehydrogenases > urease > alkaline phosphatase > acid phosphatase. Cellulose added to soil (15 g kg-1) proved to be a good factor in the improvement of soil biochemical properties, although it did not limit the effects produced by zinc.
EN
In this review the roles of specific proteins during the first step of mineralization and nucleation are discussed. Mineralization is initiated inside the extracellular organelles–matrix vesicles (MVs). MVs, containing relatively high concentrations of Ca2+ and inorganic phosphate (Pi), create an optimal environment to induce the formation of hydroxyapatite (HA). Special attention is given to two families of proteins present in MVs, annexins (AnxAs) and tissue-nonspecific alkaline phosphatases (TNAPs). Both families participate in the formation of HA crystals. AnxAs are Ca2+- and lipid-binding proteins, which are involved in Ca2+ homeostasis in bone cells and in extracellular MVs. AnxAs form calcium ion channels within the membrane of MVs. Although the mechanisms of ion channel formation by AnxAs are not well under-stood, evidence is provided that acidic pH or GTP contribute to this process. Furthermore, low molecular mass ligands, as vitamin A derivatives, can modulate the activity of MVs by interacting with AnxAs and affecting their expression. AnxAs and other anionic proteins are also involved in the crystal nucleation. The second family of proteins, TNAPs, is associated with Pi homeostasis, and can hydrolyse a variety of phosphate compounds. ATP is released in the extracellular matrix, where it can be hydrolyzed by TNAPs, ATP hydrolases and nucleoside triphosphate (NTP) pyrophosphohydrolases. However, TNAP is probably not responsible for ATP-dependent Ca2+/phosphate complex formation. It can hydrolyse pyrophosphate (PPi), a known inhibitor of HA formation and a byproduct of NTP pyrophosphohydrolases. In this respect, antagonistic activities of TNAPs and NTP pyrophosphohydrolases can regulate the mineralization process.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.