Purpose: The paper presents a concept of a system for isolation from external vibration sources with use of a magnetorheological (MR) dampers. Design/methodology/approach: Results of experimental studies of a prototype magnetorheological damper at various magnitudes of control current and the manner of modelling electromagnetic phenomena occuring in the damper are presented in this paper. The effect of magnetic field on magnetorheological fluid is modelled by the finite element method. The mathematical model of the system as well as the damper model are outlined along with the relevant control facilities. Numerical simulations were carried out for an exemplary excitation. Findings: The elaborated damper and applied control algorithms substantially infuences the values for velocities and accelerations. Incorporation of a controllable damper into the stabilization system significantly decreases displacements of the mass to be stabilized being the results of shocks and bumps caused by excitations w(t) as a compared to similar displacement of the same mass when only a passive damper was used. Research limitations/implications: For the future research it is necessary to improve characteristics of elaborated damper in order to improve its efficiency. Practical implications: Many mechanical systems should separate from sources of vibrations. The active or semiactive vibration control systems offer a number of advantages as compared with passive systems so that better efficiency of vibration damping is assured. Originality/value: The paper presents new concept of vibration damper with magnetorheological fluids and way of its application in industrial practice.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.