Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  aktywny kontur
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Real-Time Object Tracking using Gradient Vector Flow
100%
EN
In this paper an object tracking system with utilizing optical flow technique, and Gradient Vector Flow (GVF) active contours is presented. Optical flow technique is less sensitive to background structure and does not need to build a model for the background of image so it would need less time to process the image. GVF active snakes have good precision for image segmentation. However, due to the high computational cost, they are not usually applicable. Since precision is one of the important factors in the image segmentation, several methods have been developed to overcome the computational speed. In this paper, we, first, recognize the moving object. Then, the object fame with some pixels surrounding to it, was created. Then, this new frame is sent to the GVF filed calculation procedure. Contour initialization is obtained based on the selected pixels. This approach increases the calculation speed, and therefore makes it possible to use the contour for the tracking. The system was built, and tested with a microcomputer. The results show a speed of 10 to 12 frames per second which is considerably suitable for object tracking approaches.
PL
W artykule przedstawiono system śledzenia obiektu z wykorzystaniem techniki Optic Flow oraz Gradiend Vector Flow. Wykrywanie ruchomego obiektu stanowi pierwszy etap działania, następnie ramka zawierająca obiekt przesyłana jest do algorytmu GVF, gdzie określany jest zarys obiektu. Dzięki temu podejściu możliwe jest wykorzystanie, wymagającego obliczeniowo GVF w śledzeniu obiektów. Przedstawiono wyniki eksperymentalne.
2
Content available remote Rule extraction from active contour classifiers
84%
EN
In this paper, the idea of rule extraciton from active contour classifiers is presented. The concepts are new in relation to active contour approach. The problem is illustrated by examples having roots in technical diagnosis and in analysis of content of images.
3
67%
EN
HIST (Hepatic Image Segmentation Tool) is a Java-based application for segmentation and visualisation of medical images, specialised for hepatic image analysis. This paper contains an overview of the application features, a description of adapted segmentation algorithms and their experimental validation. The application provides two main segmentation methods, based on region growing and active contour model methods, adapted for the case of liver segmentation. HIST also offers data visualisation tools, including multiplanar reconstruction, volume rendering and isosurface extraction.
PL
HIST (ang. Hepatic Image Segmentation Tool – narzędzie do segmentacji obrazów wątroby) jest napisaną w języku Java aplikacją do segmentacji i wizualizacji obrazów medycznych, wyspecjalizowaną segmentacji w obrazów wątroby. Artykuł ten zawiera przegląd możliwości aplikacji, opis zaadaptowanych algorytmów segmentacji i wizualizacji oraz ich eksperymentalną walidację. Aplikacja oferuje dwie główne metody segmentacji, oparte o algorytmy rozrostu regionów i aktywnego konturu, dostosowane do segmentacji wątroby. Narzędzia wizualizacyjne aplikacji wykorzystają rekonstrukcję multiplanarną, rendering wolumetryczny oraz ekstrakcję izopowierzchni.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.