Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  aktywność mięśni
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Stair climbing under backpack load condition is a challenging task. Understanding muscle activation patterns of lower limb during stair climbing with load furthers our understanding of the factors involved in joint pathology and the effects of treatment. At the same time, stair climbing under backpack load requires adjustments of muscle activations and increases joint moment compared to level walking, which with muscle activation patterns are altered as a result of using an assistive technology, such as a wearable exoskeleton leg for human walking power augmentation. Therefore, the aim of this study was to analyze lower limb muscles during stair climbing under different backpack load. Nine healthy volunteers ascended a four-step staircase at different backpack load (0 kg, 10 kg, 20 kg, 30 kg). Electromyographic (EMG) signals were recorded from four lower limb muscles (gastrocnemius, tibialis anterior, hamstring, rectus femoris). The results showed that muscle activation amplitudes of lower limb increase with increasing load during stair climbing, the maximum RMS of gastrocnemius are greater than tibialis anterior, hamstring and rectus femoris whether stair climbing or level walking under the same load condition. However, the maximum RMS of hamstring are smaller than gastrocnemius, tibialis anterior and rectus femoris. The study of muscle activation under different backpack load during stair climbing can be used to design biomechanism and explore intelligent control based on EMG for a wearable exoskeleton leg for human walking power augmentation.
2
Content available remote Finger curvature movement recognition interface technique using SEMG signals
80%
EN
Purpose: Until recently, keyboard has been used as the primary input method for machinery operation system. But in recent years, numerous methods related to direct input interface have been developed. One of them is to measure the surface electric potential that generates on the skin surface during muscle contraction. Based of this fact, hand finger operation can also be recognized with the help of the surface muscle electric potential. The purpose of this study is to identify the hand finger operation using surface electromyogram (SEMG) during crookedness state of the finger. Design/methodology/approach: Two electrodes (Ag-AgCl electrode) were sticked randomly on the forearm muscles and the intensity of EMG signals at different muscles were measured for each crooked finger. Then depending on the intensity of the obtained electric potentials, a position was located and considered to have participated most actively during the crookedness state of that finger. Thus five locations on the forearm muscles were identified for five different fingers. Moreover, four different types of crookedness states were considered for each finger. Findings: In this experimental study, the electric current that generates on the skin during muscle activity was measured for different hand finger operations. As a result, it is found that there is a specified position related the maximum intensity of EMG signals for each finger. Practical implications: This paper cleared that the amount of crookedness of each finger can also be recognized with the help of surface EMG. It could be used as a machine interface technology in the field of welfare equipments, robot hand operation, virtual reality, etc. Originality/value: The objective of this research project was to develop the method of recognizing the hand finger operation and their crookedness states from surface electromyogram (SEMG).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.