Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  agricultural biogas
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper reviews selected methods of agricultural biogas production and characterizes their technical and technological aspects. The conditions of the anaerobic fermentation process in the reactor with adhesive skeleton bed were analyzed. The required technological criteria for the production of biogas from a substrate in the form of pig slurry were indicated. As part of experimental studies, evaluation of the biogas replacement resistance coefficient and the permeability coefficient as a function of the Reynolds number were made. The method of numerical simulation with the use of a tool containing computational fluid dynamics codes was applied. Using the turbulent flow model – the RANS model with the enhanced wall treatment option, a numerical simulation was carried out, allowing for a detailed analysis of hydrodynamic phenomena in the adhesive skeleton bed. The paper presents the experimental and numerical results that allow to understand the fluid flow characteristics for the intensification of agricultural biogas production.
3
86%
PL
Przedmiotem rozważań w niniejszej publikacji jest charakterystyka podmiotów zajmujących się wytwarzaniem biogazu rolniczego w Polsce. Głównym celem opracowania była porównawcza ocena potencjałów technicznych instalacji do wytwarzania biogazu rolniczego w Polsce w podziale na regiony i województwa. Przedmiotem rozważań w niniejszym artykule były parametry techniczne instalacji wytwarzających biogaz rolniczy, w tym roczna wydajność instalacji, zainstalowana moc układu (elektryczna i cieplna) oraz roczna wydajność instalacji do wytwarzania energii elektrycznej oraz ciepła.
EN
The publication discusses the characteristics of agricultural biogas manufacturers in Poland. The main objective of the study was a comparative evaluation of the technical potential of existing installations for the production of agricultural biogas in Poland by region and voivodeship. The article discusses the technical parameters of agricultural biogas manufacturing installations, including annual yield, installed power (electrical and thermal), as well as their annual electrical and thermal output
PL
W artykule przedstawiono wyniki badań jakości biogazu rolniczego produkowanego w Polsce. Uzyskane wyniki odniesiono do dostępnych danych publikowanych w tym zakresie w literaturze, zarówno krajowej, jak i światowej. Próbki oczyszczonego biogazu rolniczego pobrano do odpowiednich pojemników w 11 wybranych do badań biogazowniach, zachowując ich reprezentatywność w stosunku do wszystkich biogazowni rolniczych w Polsce. Wytypowane do badań biogazownie rolnicze stanowiły obiekty o zróżnicowanej wielkości, charakterystyce stosowanych substratów oraz różnym zakresie parametrów podlegających uzdatnieniu. W biogazowniach tych prowadzono głównie procesy osuszania i odsiarczania produkowanego biogazu rolniczego, a w przypadku jednej z biogazowni usuwane były również siloksany. Oznaczenie zawartości tlenku węgla(II), amoniaku oraz parametrów związanych z wilgotnością biogazu przeprowadzono na miejscu ze względu na możliwe zmiany składu gazu, wynikające z jego transportu. Pozostałe parametry jakościowe biogazu wyznaczono w laboratorium. W badanych próbkach biogazu rolniczego oznaczono zawartość takich substancji jak: wodór, azot, tlen, tlenek węgla(IV), metan, węglowodory C2–C5, siarkowodór, tiole (merkaptany), siloksany, alkohole (takie jak metanol, etanol oraz i-propanol), wybrane węglowodory jedno- oraz wielopierścieniowe, a także organiczne i nieorganiczne chlorki i fluorki. Badania zostały przeprowadzone głównie z wykorzystaniem metody chromatografii gazowej. Jedynie w przypadku oznaczania zawartości organicznych i nieorganicznych chlorków i fluorków wykorzystano metodę chromatografii jonowej, a w przypadku oznaczania wielopierścieniowych węglowodorów aromatycznych zastosowano metodę wysokosprawnej chromatografii cieczowej. Uzyskane wyniki badań wykazały, że zmienność składu biogazu rolniczego produkowanego w Polsce jest znacznie mniejsza niż opisywana w literaturze (zarówno krajowej, jak i światowej), co przyczynia się do stabilności jego parametrów energetycznych. Należy dodać, że oznaczona podczas badań zawartość zanieczyszczeń mogących występować w biogazach rolniczych była również znacznie niższa, niż podaje literatura.
EN
The article presents the results of research on the quality of agricultural biogas produced in Poland. The obtained results were compared to the available data published in this field in both domestic and world literature. Samples of purified agricultural biogas were collected in appropriate containers in 11 biogas plants selected for the research, maintaining their representativeness in relation to all agricultural biogas plants in Poland. The agricultural biogas plants selected for the research were objects of various sizes, characteristics of the substrates used and range of parameters to be treated. In these biogas plants, mainly the processes of drying and desulphurizing of the produced agricultural biogas were carried out, in the case of one of the biogas plants, siloxanes were also removed. The determination of the content of carbon monoxide(II), ammonia and the parameters related to biogas humidity was carried out on site due to possible changes in the gas composition resulting from its transport. The remaining quality parameters of biogas were determined in the laboratory. The contents of such substances as: hydrogen, nitrogen, oxygen, carbon monoxide(IV), methane, C2-C5 hydrocarbons, hydrogen sulfide, thiols (mercaptans), siloxanes, alcohols (such as methanol, ethanol and i-propanol), selected monocyclic and polycyclic hydrocarbons were determined in the tested samples of agricultural biogas, as well as organic and inorganic chlorides and fluorides. The research was mainly carried out using the gas chromatography method. Only in the case of determining the content of organic and inorganic chlorides and fluorides the ion chromatography method was used, and in the case of determination of polycyclic aromatic hydrocarbons the method of high-performance liquid chromatography was used. The obtained research results showed that the variability of the composition of agricultural biogas produced in Poland is much lower than that described in the literature (both domestic and global), which contributes to the stability of its energy parameters. It should be added that the content of pollutants that may be present in agricultural biogas determined during the research was also much lower than that provided in the literature data published in this field.
EN
In the case of dispersed power generation, such as renewable energy sources (RES), the investment risks are much higher than for fossil fuels. Higher are also the specific investment costs per MWel of installed power capacity. Therefore, the pre-investment phase for such projects should be elaborated with due diligence. In particular it refers to emerging market technologies, where there has been little or no record of their development in the past. Despite various support schemes, a professional feasibility study is not to be afforded by smaller investors. Therefore, other simplified tools must be made available for them, especially in the pre-investment phase. In this article agricultural biogas plants (ABP) were chosen to exemplify the complexity of the technoeconomic evaluation of dispersed generation in the pre-feasibility phase.
EN
This review discusses the problem of management of digested sludge with the use of various methods for the management, including extrusion cooking. Extrusion cooking as a method of management of digestate can be an innovative approach to this topic. Until now there have been no studies on the use of the extrusion process to convert anaerobic digestion sludge. The extrusion process plays an important role in the transformation of materials on an industrial scale. An agricultural biogas plant can produce up to several tons of digested sludge per year (depending on the size of the installation). The most common method for utilisation of this kind of material is the use thereof as a fertiliser. However, this solution requires large areas of farmland. The best methods for conversion of digested sludge are those allowing the separation of the solid part from the liquid part. One of these methods consists in obtaining pellets in the extrusion process.
PL
Artykuł omawia temat zagospodarowania osadu pofermentacyjnego za pośrednictwem różnych metod, w tym ekstruzji. Wykorzystanie ekstruzji jako metody zagospodarowania osadu może być innowacyjnym podejściem do tego tematu. Nie odnotowano do tej pory żadnych badań na temat stosowania procesu ekstruzji do przekształcania osadów fermentacji beztlenowej. Ekstruzja spełnia ważną rolę w przemyśle przekształcania materiałów. Jedna biogazownia rocznie może produkować (w zależności od wielkości instalacji) blisko kilkadziesiąt ton osadu rocznie. Najczęstszym sposobem zagospodarowania osadu jest wykorzystanie go jako materiału nawozowego. Takie rozwiązanie wymaga jednak znacznej powierzchni pól uprawnych. Najlepszymi metodami do zagospodarowania osadu są te, które, pozwalają na odseparowanie części stałej odpłynnej. Jedna z takich metod polega na otrzymaniu peletu w procesie ekstruzji. Tak zagospodarowany osad, po wzbogaceniu go w mikro- i makroskładniki, może być łatwo przechowywany i z powodzeniem stosowany jako pełnowartościowy nawóz organiczno-mineralny.
EN
Apart from the basic input, the right course of fermentation process is determined by the appropriate microorganism populations and the parameters such as: pH, particle size, ionic strength (salinity) and concentration of nutrients and toxic compounds. Three microorganism groups are involved in the process of anaerobic transformation of organic substances in fermentation gas: acid forming bacteria, acetate bacteria and methanogenic bacteria. The first two phases are dominated by the bacteria which are both obligate, facultative and absolute anaerobes (Clostridium spp., Bifidobacterium spp., Streptococcus spp., Enterobacter spp., Bacillus spp., Pseudomonas spp., Aerobacter spp., Alcaligenes spp, Escherichia spp, Lactobacillus spp, Micrococcus spp. czy Flavobacterium spp.) [Nimmrichter, Kuebler, 1999]. Their number during the mesophile fermentation is estimated for between 108-109 per 1ml [Hartman, 1999]. The rate of bacteria growth at both phases fluctuates from 5 hrs, in the presence of carbohydrates to 72 hrs during fat decomposition [Heidrich, Nieścier, 1999]. Presented research aimed at determining the quantity and quality of biogas depending on the microbiological environment in fractions originating from agriculture and agro-food industry. To achieve the objective of research, was evaluated the number and biodiversity of microorganisms that inhabit selected agricultural raw materials used in the production of biogas. A very important aspect of the study was to investigate the species composition of the bacteria and fungi population at different stages of fermentation process. Isolation of microorganisms from selected agricultural raw materials that stimulate the production of biogas could contribute in the future to optimize the process of its obtaining. The following substrates were used in the investigations: distillery’s grain, ensilaged beet pulp, rapeseed cake from biofuel manufacturing, apple pulp, fresh brewer’s grains (wet), corn silage harvested by silage harvester without grain squeezer, corn silage harvested by silage harvester combined with grain squeezer, cellulose from paper industry. Results of analysis of biogass yield in relation to dry mass revealed the highest productivity of the input from waste cellulose from paper industry at low productivity of biomass from agri-food industry. A delay in biogas volume increment visible in the course of fermentation of inputs from agri-food industry biomass is caused by the pasteurization of the mass which lacks microbiological environment, where microorganisms of methane fermentation multiply very slowly. The strongest inhibition of growth and delay in biogass formation was observed in the inputs made on the basis of distillery’s grains and fresh brewers’ grains. A normal productivity of biogass generation was obtained for the inputs prepared from cellulose and corn silage harvested by silage harvester equipped with grain squeezer.
|
|
tom Nr 11
5--10
PL
W pracy dokonano przeglądu metod i technik stosowanych w immobilizacji mikroorganizmów metanogennych. Przeanalizowano podane w literaturze przykłady immobilizacji poszukując obszarów badawczych odnoszących się do nośników dla szczepów bakterii stosowanych w bioreaktorach. Przesłanką dla podjęcia się opracowania artykułu jest zagadnienie zaadoptowania mikroorganizmów do produkcji biogazu rolniczego przy użyciu materiałów porowatych.
EN
The paper reviews the methods and techniques used in the immobilization of methanogenic microorganisms. The examples of immobilization given in the literature were analyzed in order to look for research areas relating to carriers for bacterial strains used in bioreactors. The premise for undertaking the article is the issue of adapting microorganisms to the production of agricultural biogas with the use of porous materials.
PL
W artykule przedstawiono ocenę wymienności mieszanek biogazu rolniczego z LNG lub LPG z gazami ziemnym drugiej rodziny grupy E i Lw metodą Weavera. Artykuł zawiera również aktualne wymagania dotyczące jakości gazów ziemnych rozprowadzanych w Polsce oraz krótką charakterystykę biogazu rolniczego, metody jego pozyskiwania, składniki oraz możliwe sposoby wykorzystania. W artykule opisano również teoretyczną metodę oceny wymienności paliw gazowych opracowaną przez Weavera. W artykule zamieszczono składy oraz parametry energetyczne mieszanek gazowych powstałych ze zmieszania biogazu rolniczego i LNG lub LPG, które odpowiadają minimalnym wymaganiom dla gazów drugiej rodziny grupy E i Lw.
EN
The Paper presents rating interchangeability of mixtures agricultural biogas with LNG or LPG with second family gases groups E and Lw by Weaver method. The article also provides current quality requirements of natural gases distributed in Poland and a brief description of agricultural biogas, methods of obtaining, components and possible ways of uses. The Paper presents also theoretical method to assess gas interchangeability of developed by Weaver. The article contains components and energetic parameters of gas mixtures made by blending agricultural biogas with LNG or LPG, which correspond to the minimum requirements for second family gases groups E and Lw.
|
2022
|
tom R. 78, nr 8
608--617
PL
Głównym celem prowadzonych analiz było sprawdzenie, czy dostępne na rynku certyfikowane urządzenia gazowe użytku domowego i komercyjnego (urządzenia wykorzystywane w zakładach gastronomicznych) można zasilać częściowo oczyszczonym biogazem rolniczym lub mieszaniną takiego biogazu z gazem ziemnym wysokometanowym grupy E lub gazem z regazyfikacji LNG. Aby odpowiedzieć na to pytanie, rozważono sytuację, w której biogaz rolniczy zostanie wstępnie oczyszczony z najbardziej niepożądanych zanieczyszczeń i docelowo będzie gazem składającym się z metanu (CH4), dwutlenku węgla (CO2) i tlenu (O2). Rozpatrywano cztery różne składy biogazu rolniczego, w których zawartość CH4 zmieniała się od 70% do 85%, natomiast CO2 – od 14,8% do 29,8%. Obliczone parametry energetyczne, a w zasadzie liczbę Wobbego tych biogazów, porównywano następnie z wartościami nominalnej liczby Wobbego gazów ziemnych grup Ln, Ls i Lw, podanymi w polskich przepisach prawnych. Innym rozpatrywanym wariantem było mieszanie częściowo oczyszczonego biogazu rolniczego z gazem ziemnym wysokometanowym grupy E lub gazem z regazyfikacji LNG w takich proporcjach, aby powstałe mieszaniny osiągnęły minimalne wymagania energetyczne dla gazów ziemnych grup Ls, Lw i E oraz minimalne i maksymalne wymagania energetyczne dla gazu ziemnego grupy S (gaz zawierający w swoim składzie CO2 rozprowadzany na Węgrzech). Określono proporcje mieszania tych gazów, podano potencjalne składy powstałych mieszanin, ich parametry energetyczne oraz ciśnienia zasilania urządzeń końcowych spalających te mieszaniny. Na podstawie przeprowadzonych obliczeń podano, które kategorie urządzeń można potencjalnie wykorzystać do zasilania ich bądź to częściowo oczyszczonym biogazem, bądź też jego mieszaninami z gazem ziemnym wysokometanowym grupy E lub gazem z regazyfikacji LNG. Opisano również, jakie ewentualne zmiany będą konieczne w takich urządzeniach, aby można je było bezpiecznie użytkować po zmianie gazu.
EN
The main goal of the analyzes was to check whether the certified gas appliances available on the market for domestic and commercial use (catering equipment) can be supplied with partially purified agricultural biogas or mixture of such biogas in combination with group E high-methane natural gas or gas form LNG regasification. To answer this question, a situation in which the agricultural biogas would be pre-treated to remove the most undesirable pollutants and would ultimately be a gas consisting of methane (CH4), carbon dioxide (CO2) and oxygen (O2) was considered. Four different compositions of agricultural biogas were considered in which content of methane varied from 70% to 85% and carbon dioxide from 14.8% to 29.8%. The calculated energy parameters (Wobbe index) of these biogases were then compared with the nominal Wobbe index for natural gases of Ln, Ls and Lw groups set out in Polish legislation. Another option considered was to mix partially purified agricultural biogas with group E high-methane natural gas or gas from LNG regasification, in such proportions that the resulting mixtures would meet the minimum energy requirements for natural gases from the Ls, Lw and E groups as well as the minimum and maximum energy requirements for natural gas S group (a gas containing carbon dioxide distributed in Hungary). The mixing proportions of these gases were determined, the potential compositions of the resulting mixtures, their energy parameters and the supply pressures of the end devices burning these mixtures were given. Based on the calculations performed, the categories of devices that could potentially be supplied with either partially purified biogas or its mixtures with group E high-methane natural gas or gas from LNG regasification were indicated. The article also describes what, if any, modifications will be necessary to such devices to make them safe to use after the gas change.
11
Content available remote Adsorpcyjne metody usuwania siarkowodoru z biogazu
72%
|
2015
|
tom T. 94, nr 12
2199-2202
PL
Przedstawiono możliwości odsiarczania biogazu, za pomocą modyfikowanej rudy darniowej i węgla aktywnego. Omówiono procesy zachodzące na powierzchni sorbentów. Przeanalizowano również potencjalne modyfikacje mające na celu usprawnić procesy odsiarczania z wykorzystaniem tych materiałów. Zwrócono także uwagę na haloizyt, jako wydajny, nowy sposób sorpcji siarkowodoru, nad którym rozpoczęto badania w ostatnich latach.
EN
A review, with 31 refs. of the methods for removal of H2S from biogas by sorption on bog ore, activated carbon, and halloysite.
EN
The agricultural and food sector accounts for substantial volumes of organic waste (such as livestock excreta, meat offals) considered as onerous on the environment. The above decomposes formulating methane, carbon dioxide and hydrogen sulphide in anaerobic conditions. Methane produced in digester chambers of a biomass plant (called biogas) may be applied for the production of electricity and heat, powering of vehicles as well as injections into gas networks. Biogas is one of the renewable sources of energy. In the light of the EU's sustainable development and climate neutrality policies, increasing the share of renewable sources in overall energy consumption is a priority for the Member States. For this reason, the article examines one of the renewable energy sectors in Poland, which is agricultural biogas production. The main attention was focused on agricultural biogas plants. Most often used substrates for biogas production, the dependence of biogas plant location on the population living in particular regions (voivodships) and the development of agriculture in their territories were analysed. The main purpose of the article was to indicate the reasons for the failure of the agricultural biogas plant construction program in Poland. Literature and document analysis were performed, interviews with waste producers as well as owners of agricultural biogas plants were carried out, and SWOT analysis was prepared.
13
Content available Recruiting and using agricultural biogas
58%
EN
We are calling gas acquired of biomass, in particular from the installation alterations of animal wastes or plant, of the sewage treatment plant and landfill sites. The large potential of the biogas production has the farming. In farm households considerable quantities of waste which can be used in the fermentation are arising. Special agricultural cultivations and waste of the food production are a next source of biomass. In the article vital statistics were described about biogas, the process of the biogas production and conditions in which he should run.
PL
Biogazem nazywamy gaz pozyskany z biomasy, w szczególności z instalacji przeróbki odpadów zwierzęcych lub roślinnych, oczyszczalni ścieków oraz składowisk odpadów. Największy potencjał produkcji biogazu ma rolnictwo. W gospodarstwach hodowlanych powstają znaczne ilości odpadów, które mogą być wykorzystane w procesie fermentacji. Kolejnym źródłem biomasy są specjalne uprawy rolne oraz odpady produkcji spożywczej. W artykule przedstawiono podstawowe informacje na temat biogazu, procesu produkcji biogazu oraz warunków w jakich powinien przebiegać.
|
|
tom No. 2
art. no. 790
EN
In Poland, despite ambitious plans from 15 years ago, when it was assumed that by 2020, an agricultural biogas plant would be standard in every commune, the potential of agricultural biogas has not been used due to the lack of stable legal regulations and financing programmes for the construction of the plants. The situation has now changed due to new forms of support systems, which motivated the authors to compare two agricultural biogas plants operating in the certificate system and the support system in the form of feed-in premiums. Moreover, the authors pointed to differences in the number of agricultural biogas plants and their capacity by voivodeship due to changes in legal conditions in force in two periods: from 1 January 2011, to 30 June 2016, and from 1 July 2016, to 19 January 2024. Based on the research methods used ‒ including Earnings Before Interest, Taxes Depreciation and Amortisation, the Internal Rate of Return, risk matrix and data analysis in spatial terms ‒ it was indicated that: 1. agricultural biogas plants are characterised by very high sensitivity related to the probability of risk in the case of investment costs, substrate prices and changes in energy prices; 2. financial support is important at the stage of construction of a biogas plant, which largely makes it possible to shorten the payback period and thus increase the willingness of future investors to invest in biogas plants and 3. in the periods analysed, significant differences were noted in the spatial location of biogas plants due to trends towards lower-power biogas plants, which is probably dictated by the constant and predictable premium system in the new support system.
PL
W Polsce potencjał biogazu rolniczego pomimo ambitnych planów sprzed 15 lat, gdzie zakładano, że do 2020 roku standardem będzie biogazownia rolnicza w każdej gminie, nie został wykorzystany ze względu na brak stabilnych regulacji prawnych oraz programów finansowania budowy biogazowni rolniczych. Sytuacja obecnie uległa zmianie ze względu na nowe formy systemów wsparcia, co zmotywowało autorów do porównania dwóch biogazowni rolniczych funkcjonujących w systemie certyfikatów oraz w systemie wsparcia w postaci feed-in premium (FIP). Ponadto, autorzy wskazali na różnice w liczbie biogazowi rolniczych i ich mocy według województw w związku ze zmianą uwarunkowań prawnych, obowiązujących w dwóch okresach: od 1 stycznia 2011 roku do 30 czerwca 2016 roku i od 1 lipca 2016 roku do 19 stycznia 2024 roku. Na podstawie zastosowanych metod badawczych, m.in. Earnings Before Interest, Taxes Depreciation and Amortisation (EBITDA); Internal Rate of Return (IRR); risk matrix; oraz analiza danych w ujęciu przestrzennym wskazano iż: 1. Biogazownie rolnicze charakteryzują się bardzo wysoką wrażliwością związaną z prawdopodobieństwem wystąpieniem ryzyka w przypadku kosztów inwestycyjnych, cen substratów oraz zmiany cen energii.; 2. Wsparcie finansowe jest istotne na etapie budowy biogazowi, które w dużej mierze pozwala skrócić okres zwrotu i tym samym zwiększyć skłonność przyszłych inwestorów do inwestowania w biogazownie; 3. W analizowanych okresach odnotowano istotne różnice w rozmieszczeniu przestrzennym biogazowni ze względu na tendencje w kierunku biogazowni o mniejszej mocy, co prawdopodobnie jest podyktowane stałym i przewidywalnym systemem premii w nowym systemie wsparcia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.