Experimental evidence shows that the bond between the aggregate and cement paste can be sufficiently strong in highstrength concretes for cracks to pass through the aggregate. Cracks that pass through coarse aggregate are smooth and significantly reduce the potential for shear transfer through aggregate interlock action. Current design methods for shear do not take the aggregate type into consideration. This paper describes a series of non-linear finite element analyses the authors carried out to assess the influence of crack roughness on the shear strength of beams. The models incorporated both smeared and discrete cracking elements. The numerical models were validated with data from 22 beams tested at Imperial College London. In general, the ultimate load, crack patterns and relative crack displacements were satisfactorily reproduced. The reduction in strength due to aggregate fracture was found to be greatest in slender beams without stirrups and insignificant in short span beams where the cracks tended to open rather than slide.
PL
Badania doświadczalne wskazują, że w betonie wysokiej wytrzymałości siły przyczepności pomiędzy kruszywem i zaczynem cementowym mogą być na tyle duże aby zarysowanie powstawało w kruszywie. Rysy przechodzące przez kruszywo są gładkie i znacząco redukują zdolność do przenoszenia sił tnących poprzez zazębianie się kruszywa. W artykule przedstawiono nieliniowe analizy numeryczne, przeprowadzone przez autorów w celu oceny wpływu charakteru zarysowania na nośność na ścinanie belek. Analizy wykonano zarówno dla modelu z rozmytym jak i dyskretnym obrazem zarysowania. Modele numeryczne zostały porównane z wynikami badań 22 belek. Największe obniżenie nośności na ścinanie spowodowane zniszczeniem kruszywa obserwowano w belkach smukłych, nie zbrojonych strzemionami.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Aggregate interlock is a stress transfer mechanism in cracked concrete. After concrete cracks under tensile loading, crack interfaces can experience significant slip deformation due to the applied crack kinematics. Upon rising slip along crack interfaces, aggregate interlock stresses are generated which transfer shear stress and normal stress. Many experimental programmes and analytical expressions have been developed for several decades. However, a finite element model considering realistic crack surfaces was still not developed. The complexity of developing a FE model lies due to the mesoscopic nature of the problem. In this study, concrete mesoscale models were employed to generate realistic cracked concrete surfaces. Uniaxial tensile fracture propagation in concrete mesoscale models were achieved using Zero-thickness cohesive elements approach. Once cracked concrete FE models are developed, validation of the proposed FE models was conducted against two experimental campaigns. The study comprises the evaluation of the surface roughness index of the cracked concrete surfaces. The FE model predicts secondary cracking under low initial crack widths and mixed mode angles. FE predictions were further compared with Walraven’s simplified formulae, Bažant’s rough crack model, Cavagnis’s aggregate interlock formulae and contact density model and consistence agreement was observed. Finally, strengths and weaknesses of the proposed FE modelling approach for aggregate interlock was discussed and further implementations were also highlighted.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.