H. A. Wilbrink [Geom. Dedicata 12 (1982)] considered a class of Minkowski planes whose restrictions, called residual planes, are nearaffine planes. Our study goes in the opposite direction: what conditions on a nearaffine plane are necessary and sufficient to get an extension which is a hyperbola structure.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to give a simple method of computing the set S[f] of points at which a generically-finite polynomial mapping f : [C^2 --> C^2] is not proper.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
There are three kinds of Benz planes: Mobius planes, Laguerre planes and Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with some other structure called a nearaffine plane. We construct an analogous structure for a Laguerre plane. Moreover, our description is common for both cases.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper deals with nearaffine planes described by H. A. Wilbrink. We consider their central automorphisms, i.e. automorphisms satisfying the Veblen condition, which become central collineations in connected projective planes. Moreover, a concept of central pseudo-automorphism is considered, i.e. some bijections in a nearaffine plane are not automorphisms but they become central collineations in the related projective planes.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.