The soils consist of various components that can play a significant role in control of heavy metals in the environment. Therefore, understanding of adsorption properties of soil is essential in solving pollution problems around mine sites. The goal of this paper is to study Zn(II) ions adsorption onto copper mine soil. Soils were examined via X-ray diffraction and scanning electron microscopy. The influence of various parameters such as effect of pH, adsorbent dose, and initial concentration of Zn(II) ions on adsorption was evaluated by batch method. The adsorption isotherms of Zn(II) ions such as Langmuir, Freundlich, and Temkin were studied. The Langmuir isotherm indicated an excellent fit for the experimental data in comparison with other isotherms that shown monolayer adsorption onto a homogenous surface. A number of kinetic models were tested to fit the kinetic data. The results show that soils can be more effective in decreasing heavy metals contamination specially Zn(II) ions from solution phase.
Textile wastewater has become one of the serious environmental problems due to containing a high concentration of chemicals with extreme color intensity. Reactive red RB is among the synthetic azo dyes commonly used as a textile colorant with their property are very difficult to degrade naturally. This research was focused on studying the kinetic behavior, and adsorption isotherm of reactive red RB textile dye on coconut leaf stalk activated carbon (CLSC). Coconut leaf stalk carbon was activated using sulphuric acid and sodium hydroxide. It was investigated in terms of chemical functional groups, surface morphology, carbon content, ash content, and adsorption efficiency of reactive red RB textile dye under various conditions of initial pH, incubation time, and dye concentration. The results showed the maximum adsorption efficiency of reactive red RB dye with a concentration dye of 60 mg/l onto CLSC surface activated by sulfuric acid and sodium hydroxide in an experiment carried out at pH 5 for 120 min were 88.73% and 64.27%, respectively. The adsorption isotherm of reactive red RB on the CLSC surface follows the Langmuir isotherm model, which shows that the adsorption process occurs monolayer. In contrast, the adsorption kinetics correspond to pseudo-second-order.
Adsorption of methyl tert-butyl ether (MTBE) from aqueous solutions by granulated modifi ed nanozeolites Y was investigated. Nanozeolite Y powders were converted into granulated zeolites and subsequently modifi ed with two cationic surfactants (20 mmol/dm3), to be used as adsorbent. Granulated nanozeolites were characterized by BET surface area analysis, elemental analysis and X-ray diffractometer. Hexadecyltrimethylammonium (HDTMA-Cl) modifi ed granulated zeolite had more effective performance than N-cetylpyridinium bromide (CPB) modifi ed granulated zeolite. The most conventional adsorption isotherms and kinetic models were applied to describe MTBE adsorption and reaction dynamic, respectively. The equilibrium sorption data fi tted the Langmuir 2 isotherm model and the kinetic study was followed the pseudo-second-order model. The maximum adsorption capacities for HDTMA-Cl modifi ed zeolite and CPB modifi ed granulated zeolite were 333.33 and 142.8 mg/g, respectively as calculated by the Langmuir model. This study demonstrated that the removal of mtbe by granulated modifi ed nanozeolites Y is a promising technique.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.