Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  additive functions
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
For real inner product spaces we consider and compare the classes of mappings satisfying some conditional and unconditional functional equations.
2
Content available remote A comparison of some conditional functional equations
100%
EN
For real inner product spaces we consider and compare the classes of mappings satisfying some conditional and unconditional functional equations.
3
Content available remote On the Behavior of Power Series with Completely Additive Coefficients
75%
EN
Consider the power series A(z)=∑∞n=1 α (n) zn, where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity e2πil/q. We give effective omega-estimates for A(e(l/pk)r) when r→1−. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.
4
Content available remote Polynomials in additive functions and generalized polynomials
63%
EN
We consider polynomials P in additive functions g1,... , gm and present two approaches for a characterization of those generalized polynomials p, which may be represented as p = P o (g1,..., gm). Under rather general assumptions on the domains of the gi and of P, one of the approaches is based on certain properties of subspaces generated by translates of p. The other approach utilizes the fact, that every p is the diagonalization of an associated multi-Jensen function.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.