Consider the power series A(z)=∑∞n=1 α (n) zn, where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity e2πil/q. We give effective omega-estimates for A(e(l/pk)r) when r→1−. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider polynomials P in additive functions g1,... , gm and present two approaches for a characterization of those generalized polynomials p, which may be represented as p = P o (g1,..., gm). Under rather general assumptions on the domains of the gi and of P, one of the approaches is based on certain properties of subspaces generated by translates of p. The other approach utilizes the fact, that every p is the diagonalization of an associated multi-Jensen function.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.