Let M be a non-empty set endowed with a dense linear order without the smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely divisible subgroup. There are given conditions under which every solution F: M×G → M of the translation equation is of the form $F(a,x) = f^{-1}(f(a) + c(x))$ for a ∈ M, x ∈ G with some non-trivial additive function c: G → ℝ and a strictly increasing function f: M → ℝ such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We determine the solutions f : S → H of the following functional equation f(xy) + f(σ(y)x) = 2f(x), x,y∈S, and the solutions f1, f2, f3 : M → H of the functional equation f1(xy) + f2(σ(y)x) = 2f3(x), x,y∈M, where S is a semigroup, M is a monoid, H is an abelian group 2-torsion free, and σ is an involutive automorphism.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.