The paper considers development of an adaptive algorithm for a measurement system in conditions of Rayleigh fading of signals in radio channels. The probability density functions (pdf) of time measurement variances are calculated. For these pdf an approximation of measurement noise distributions is proposed and an adaptive Kalman filter for processing transmitted data has been designed. The results of simulations of the proposed adaptive algorithm are presented.
PL
W artykule zaproponowano adaptacyjny algorytm przetwarzania danych w systemach przesyłu informacji w warunkach fluktuacji amplitudy o charakterze Rayleigha. Zaproponowano wykorzystanie aproksymacji funkcji gęstości prawdopodobieństwa szumu pomiarowego oraz adaptacyjny filtr Kalmana. Przedstawiono wyniki badań symulacyjnych.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The objective of the green logistics distribution model is to minimise environmental pollution and energy usage by employing clean energy, optimising transport routes and enhancing transport efficiency. Nonetheless, current studies on green logistics distribution models and warehousing planning exhibit certain drawback, such as imprecise location accuracy and decreased distribution revenues. To overcome these challenges, this paper proposes a novel approach that combines inertial measurement unit (IMU) and binocular vision, leveraging multisource information positioning. Specifically, the method integrates data collection and preprocessing modules to gather crucial logistics distribution task information, encompassing IMU data, image data and vehicle data. The visual and inertial positioning module consists of two components: visual positioning based on the grey centre method and IMU positioning based on the integral essence. Finally, an adaptive Kalman filter is employed to merge the results of visual positioning and IMU positioning, thus producing the ultimate logistics vehicle positioning result. The proposed method effectively addresses existing challenges in the green logistics distribution model and warehouse planning. In particular, the experimental results demonstrate that the algorithm proposed in this study reduces the location error by 8%. Furthermore, logistics and distribution costs are reduced by 11 %, contributing to the promotion of sustainable and environmentally friendly logistics operations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.