Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  acetylacja
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Modyfikacje potranslacyjne tubuliny
100%
PL
Zarówno wolna tubulina, jak i tubulina wbudowana w mikrotubule może być modyfikowana potranslacyjnie poprzez przyłączenie różnorodnych grup funkcyjnych. Wśród kilkunastu zidentyfikowanych modyfikacji α- i β-tubuliny, przynajmniej niektóre zmiany potranslacyjne, jak acetylacja, detyrozynacja czy glutamylacja są zachowane w toku ewolucji od pierwotniaków do człowieka. Modyfikacje potranslacyjne tworzą specyficzny wzór na powierzchni mikrotubul, nazwany kodem tubulinowym, który jest rozpoznawany i "interpretowany" przez białka oddziałujące z mikrotubulami. W efekcie modyfikacje potranslacyjne tubuliny wpływają zarówno bezpośrednio na właściwości mikrotubul, jak i pośrednio, przez białka towarzyszące mikrotubulom. Poziom modyfikacji potranslacyjnych tubuliny na poszczególnych mikrotubulach jest zróżnicowany i zależy od rodzaju tworzonych struktur mikrotubularnych oraz typu komórek. Dodatkowo, poziom modyfikacji potranslacyjnych tubuliny może zmieniać się zależnie od stadium cyklu komórkowego lub stopnia zróżnicowania komórki. Intensywne badania prowadzone w ciągu ostatnich lat zaowocowały odkryciem kluczowych enzymów modyfikujących α- i β-tubulinę oraz częściowo, mechanizmu ich działania. Nadal jednak jesteśmy dalecy od pełnego zrozumienia roli modyfikacji potranslacyjnych mikrotubul w regulacji procesów komórkowych.
EN
Both, free tubulin and tubulin incorporated into microtubules can be extensively posttranslationally modified. Among numerous identified modifications of α- and β-tubulin, at least some modifications such as acetylation, detyrosination or glutamylation are highly evolutionarily conserved from protists to man. The posttranslational modifications of tubulin form a specific pattern on the microtubule surface, called a tubulin code, that is recognized and interpreted by microtubule interacting proteins. Thus, tubulin posttranslational modifications can affect the microtubule properties, both directly and indirectly, by regulating the interactions with microtubule associated proteins. The level of the tubulin posttranslational modifications vary on different types of microtubules and depends upon the type of the microtubular structures and the cell type. Additionally, the levels of tubulin modifications can change during the cell cycle and cell differentiation. The extensive studies carried out during the last years resulted in a discovery of some of the key enzymes that modify α- and β-tubulin as well as partial understanding of the mechanisms of their action. However, despite all the efforts we are still far from the full understanding of the significance of the microtubule posttranslational modifications in the regulation of cellular processes.
EN
Epigenetics analyses inherited characteristics not directly connected to the DNA nucleotide sequence. It investigates the relationships between biochemical modifications and the expression of selected genes. Initially, it was thought that gene expression depends on information encoded in the DNA sequence. However, it was discovered that the activity of many enzymes like methylases, demethylases, acetylases, deacetylases is necessary to regulate this process and its dysregulations may lead to e.g. cancer initiation and progression. Epigenetics has an impact on neoplastic transformation by reducing the global level of DNA methylation and increasing the methylation level within tumour suppressor gene promoters, which significantly impairs the repression of carcinogenesis. Additionally, modifications of histone proteins, based on disorders of acetylation-deacetylation and methylation-demethylation processes, may lead to overexpression of genes involved in cancer development. Numerous examples have been described, among others breast, prostate and colon cancers, depending on the modification of histone amino tails, primarily of histone H3. For such reasons, the possibility of using many therapies which can reverse the negative effect of these modifications by e.g. DNA demethylation (DNA demethylating drugs) or re-acetylation of histone lysine resides (histone deacetylase inhibitors) is examined. In the near future, epigenetics probably will allow the effective treatment of some cancer diseases, although further research on the impact of enzymatic modifications on the development of carcinogenesis is still needed.
PL
Epigenetyka zajmuje się badaniem cech dziedzicznych, które nie zależą bezpośrednio od sekwencji nukleotydowej w DNA, ale są rezultatem modyfikacji biochemicznych na ekspresję wybranych genów. Początkowo uważano, że ekspresja genów zależy tylko od informacji zapisanej zawartej w sekwencji DNA, z czasem okazało się, że liczne modyfikacje będące rezultatem działania różnych grup enzymów, w tym metylaz, demetylaz, acetylaz czy deacetylaz, wpływają na regulację tego procesu, a zaburzenia regulacji aktywności tych enzymów mogą prowadzić do wystąpienia i rozwoju m.in. nowotworów. Epigenetyczny aspekt rozwoju transformacji nowotworowej wskazuje na obniżenie globalnego poziomu metylacji DNA oraz podwyższenie poziomu metylacji w obrębie promotorów genów supresorowych, co znacząco upośledza represję nowotworzenia. Dodatkowo, modyfikacje białek histonowych, opierające się na dysregulacji procesów acetylacji–deacetylacji i metylacji – demetylacji, prowadzą do nadekspresji genów zaangażowanych w rozwój kancerogenezy. Opisane zostały liczne przykłady zależności wystąpienia nowotworów, m.in. raka sutka, stercza czy okrężnicy od wystąpienia danej modyfikacji reszt aminokwasowych białek histonowych, w tym głównie histonu H3. Z takich też przyczyn podejmowane są próby zastosowania terapii odwracających negatywny skutek wybranych modyfikacji, np. poprzez demetylację DNA (leki demetylujące DNA) czy reacetylację reszt lizynowych histonów (inhibitory decetylaz histonów). W niedalekiej przyszłości epigenetyka najprawdopodobniej u możliwi skuteczne leczenie części chorób nowotworowych, aczkolwiek konieczne są dalsze badania wpływu modyfikacji enzymatycznych na mechanizm rozwoju kancerogenezy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.