In the paper the dynamic response of thin-walled, spot-welded prismatic frusta subjected to axial impact load is investigated. The parametric study into the influence of several parameters on the energy absorption capability, expressed by some crashworthiness indicators is performed, using Finite Element simulations. FE model is validated by experimental results of quasi-static and dynamic (impact) tests. Results of initial study concerning influence of spot welds are presented. Some conclusions are derived from the parametric study into the influence of frustum angle and wall thickness upon the energy absorption capability.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this article, we propose a new class of metal-polymer architected sandwich structures that exhibit different mechanical behaviors. These lightweight sandwich structures have been made of aluminum face sheets and 3D-printed lattice cores with 2D (Bi-grid, Tri-grid, Quadri-grid and Kagome-grid) and 3D (face-centered cubic-like and body-centered cubic-like) topologies. Finite element simulation and experimental tests were carried out to evaluate mechanical performances of the proposed sandwich structures under quasi-static three-point bending load. Specifically, the damage-tolerant capability, energy absorption and failure mechanisms of these sandwich structures were investigated and evaluated through a combination of analytical, numerical and experimental methods. It is found that sandwich structures with 3D face and body-centered cubic-like cores can provide more excellent flexural stiffness, strength and energy absorption performance. These enhanced mechanical features could be further explained by a so-called ‘Stress Propagation’ mechanism through finite element analysis (FEA) that can facilitate sandwich structures with 3D cores, especially body-centered cubic-like one, to transfer bending loads from central lattice units across neighboring ones more efficiently than 2D cores. Furthermore, core cracking is the main failure mode for the proposed sandwich structures, which is primarily caused and dominated by bending-induced tensile stress followed by shear stress. It is worth mentioning that our findings provide new insights into the design of novel lightweight sandwich composites with tailored mechanical properties, which can benefit a wide variety of high-performance applications.
This paper reports an investigation on the ballistic impact performance of high strength unidirectional (UD) fabrics UHMWPE coated with natural rubber latex (NRL). The effects of adding calcium carbonate in the NRL on the ballistic impact were also studied. Several NRL coated UD fabrics were assembled together with neat UD fabrics in a 12-ply fabric system. The ballistic limit and energy absorption of the fabric systems were determined. Results of the ballistic limit test showed that the NRL coated UD fabrics gave some positive effects in enhancing the ballistic impact performance of the fabric systems in comparison with all-neat fabric systems. Several mechanisms of energy absorption were observed on the fabric systems which include burn marks, fibre stretching, fibre pull-out, shearing, delamination of fabric plies for completely penetrated fabric systems and a punched-out effect on the back ply of partially penetrated fabric systems.
PL
Badania dotyczyły efektu uderzenia pocisku w balistyczny pakiet wykonany z pokrywanych naturalną gumą tkanin typu UD wykonanych z polietylenu o ultra wysokiej masie cząsteczkowej. Dodatkowo badano wpływ dodania węglanu wapnia do kauczuku naturalnego. W pakietach składano tkaniny powlekane i niepowlekane w systemy zawierające do 12 warstw. Określano limit balistyczny i energię absorpcji uzyskanych pakietów. Wyniki badań wskazują, że powlekanie warstw gumą naturalną daje pozytywne efekty poprawiając zachowanie pakietu na uderzenie pocisku. Obserwowano pojawianie się przypalenia pakietów, rozciąganie włókien, wyciąganie włókien, ścinanie, delaminację pakietów aż do całkowitej penetracji wszystkich warstw systemu.
Piany aluminiowe wytworzono metodą metalurgii proszków ze stopu AlSi10 z dodatkiem środka spieniającego w ilości 0,9 % wag. TiH2. Otrzymane piany poddano pomiarom gęstości i jednoosiowej próbie ściskania, z różną szybkością odkształcania w zakresie 3,3x10 do potęgi -3 /s - 1,66x10 do potęgi -1 /s i 5/s - 55/s. Oceniono wpływ szybkości odkształcenia na zaabsorbowaną energię i wytrzymałość na ściskanie. Przeprowadzone badania wykazały, że zwiększanie szybkości odkształcania w badanym zakresie powoduje wzrost zaabsorbowanej przez piany energii, a także nieznaczne zmniejszenie wytrzymałości na ściskanie sigma c. Zaabsorbowaną energię obliczono przy zastosowaniu dwóch różnych metod wyznaczania odkształcenia, przy którym rozpoczyna się zagęszczanie piany (epsilon D). Zmierzona wartość epsilon D maleje ze wzrostem gęstości pian i szybkości ich odkształcania.
EN
Aluminium foams were produced by powder metallurgy method from AlSi10 alloy with addition of 0,9 wt. % of foaming agent (TiH2). The foams were subjected to density measurements and uniaxial compressive tests with different strain rates in the ranges of 3,3x10 to the -3 /s - 1,66x10 to the -1 /s and 5/s - 55/s. The influence of strain rate on the absorbed energy and compressive strength were investigated. The results showed that increase of strain rate, in the investigated range, leads to increase of the absorbed energy, as well as to slight decrease of compressive strength, sigma c. Absorbed energy was calculated using two different methods for determination of the strain values at which foam densification starts (epsilon D). The epsilon D values measured from the stress-strain curves decrease with increase of the foam density and strain rate.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.