Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  absolute equivalence
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Motion planning, equivalence, infinite dimensional systems
100%
EN
Motion planning, i.e., steering a system from one state to another, is a basic question in automatic control. For a certain class of systems described by ordinary differential equations and called flat systems (Fliess et al. 1995; 1999a), motion planning admits simple and explicit solutions. This stems from an explicit description of the trajectories by an arbitrary time function, the flat output, and a finite number of its time derivatives. Such explicit descriptions are related to old problems on Monge equations and equivalence investigated by Hilbert and Cartan. The study of several examples (the car with -trailers and the non-holonomic snake, pendulums in series and the heavy chain, the heat equation and the Euler-Bernoulli flexible beam) indicates that the notion of flatness and its underlying explicit description can be extended to infinite-dimensional systems. As in the finite-dimensional case, this property yields simple motion planning algorithms via operators of compact support. For the non-holonomic snake, such operators involve non-linear delays. For the heavy chain, they are defined via distributed delays. For heat and Euler-Bernoulli systems, their supports are reduced to a point and their definition domain coincides with the set of Gevrey functions of order 2.
2
Content available remote Motion Planning, Equivalence, Infinite Dimensional Systems
84%
|
2001
|
tom Vol. 11, no 1
165-188
EN
Motion planning, i.e., steering a system from one state to another, is a basic question in automatic control. For a certain class of systems described by ordinary differential equations and called flat systems (Fliess et al., 1995; 1999a), motion planning admits simple and explicit solutions. This stems from an explicit description of the trajectories by an arbitrary time function y, the flat output, and a finite number of its time derivatives. Such explicit descriptions are related to old problems on Monge equations and equivalence investigated by Hilbert and Cartan. The study of several examples (the car with n-trailers and the non-holonomic snake, pendulums in series and the heavy chain, the heat equation and the Euler-Bernoulli flexible beam) indicates that the notion of flatness and its underlying explicit description can be extended to infinite-dimensional systems. As in the finite-dimensional case, this property yields simple motion planning algorithms via operators of compact support. For the non-holonomic snake, such operators involve non-linear delays. For the heavy chain, they are defined via distributed delays. For heat and Euler-Bernoulli systems, their supports are reduced to a point and their definition domain coincides with the set of Gevrey functions of order 2.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.