Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Zig-Zag Test
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Ship Manoeuvring Performance Experiments Using a Free Running Model Ship
100%
EN
In this paper, a 3m-class free running model ship will be introduced with its manoeuvring per-formance experiments. The results of turning circle test and zig-zag test will be explained. The developed system are equipped with GPS, main control computer, wireless LAN, IMU (Inertial Measurement Unit), self-propulsion propeller and driving rudder. Its motion can be controlled by RC (Radio Control) and wireless LAN from land based center. Automatic navigation is also available by pre-programmed algorithm. The trajectory of navigation can be stored by GPS and it provides us with important date for ship’s motion control experiments. The results of manoeuvring performance experiment have shown that the developed free run-ning model ship can be used to verify the test of turning circle and zig-zag. For next step, other experimental researches such as ship collision avoidance system and automatic berthing can be considered in the future.
EN
Ship maneuvering models are the keys to the research of ship maneuverability, design of ship motion control system and development of ship handling simulators. For various frames of ship maneuvering models, determining the parameters of the models is always a tedious task. System identification theory can be used to establish system mathematical models by the system’s input data and output data. In this paper, based on the analysis of ship hydrodynamics, a nonlinear model frame of ship maneuvering is established. System identification theory is employed to estimate the parameters of the model. An algorithm based on the extended Kalman filter theory is proposed to calculate the parameters. In order to gain the system’s input and output data, which is necessary for the parameters identification experiment, turning circle tests and Zig-zag tests are performed on shiphandling simulator and the initial data is collected. Based on the Fixed Interval Kalman Smoothing algorithm, a pre-processing algorithm is proposed to process the raw data of the tests. With this algorithm, the errors introduced during the measurement process are eliminated. Parameters identification experiments are designed to estimate the model parameters, and the ship maneuvering model parameters estimation algorithm is extended to modify the parameters being estimated. Then the model parameters and the ship maneuvering model are determined. Simulation validation was carried out to simulate the ship maneuverability. Comparisons have been made to the simulated data and measured data. The results show that the ship maneuvering model determined by our approach can seasonably reflect the actual motion of ship, and the parameter estimation procedure and algorithms are effective.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.