In this paper we find a lower bound of the second-order nonlinearities of Boolean bent functions of the form f(x) = [formula], where d1 and d2 are Niho exponents. A lower bound of the second-order nonlinearities of these Boolean functions can also be obtained by using a recent result of Li, Hu and Gao (eprint.iacr.org/2010 /009.pdf). It is shown in Section 3, by a direct computation, that for large values of n, the lower bound obtained in this paper are better than the lower bound obtained by Li, Hu and Gao.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Spectral methods constitute a useful tool in the analysis and synthesis of Boolean functions, especially in cases when other methods reduce to brute-force search procedures. There is renewed interest in the application of spectral methods in this area, which extends also to the closely connected concept of the autocorrelation function, for which spectral methods provide fast calculation algorithms. This paper discusses the problem of spectral decomposition of Boolean functions using the Walsh transform and autocorrelation characteristics.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.