The influence of pouring temperature on the fluidity, microstructure and hardness of modern magnesium alloys containing rare earth and zirconium (Elektron 21) and yttrium (WE54) was investigated in the paper. The experimental data showed that the pouring temperature influenced the fluidity of these alloys, which is one of the most important properties of cast alloys. In the case of Elektron 21 alloy the relationship between the pouring temperaturę and the fluidity was typical for metallic alloys, whereas in WE54 magnesium alloy, the decrease of the fluidity above 780 C was observed. The volume fraction of intermetallic phases and hardness of the Elektron 21 and WE54 alloys did not depend on the pouring temperature.
PL
W pracy przedstawiono wyniki badań wpływu temperatury odlewania nowoczesnych stopów magnezu zawierających metale ziem rzadkich (Elektron 21) i itr (WE54) na lejność, mikrostrukturę i twardość. Na podstawie uzyskanych rezultatów stwierdzono, że temperatura odlewania wpływa na lejność badanych stopów. W przypadku stopu Elektron 21 obserwowano charakterystyczną dla materiałów metalicznych zależność pomiędzy lejnością a temperaturą odlewania. W stopie WE54 stwierdzono zmniejszenie lejności przy temperaturze odlewania wyższej od 780°C. Udział objętościowy faz międzymetalicznych występujących w badanych stopach i ich twardość nie zależą od temperatury odlewania.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: Poor corrosion resistance is one of the main causes to prevent magnesium alloys for wide applications. The addition of rare earth elements (RE) is an effective way to improve corrosion resistance of magnesium alloys. Heat treatment condition can also influence the corrosion behavior of magnesium alloys. The purpose of the investigation was to study the corrosion resistance of WE54 alloy after heat treatment. Design/methodology/approach: The study was conducted on WE54 alloy in the as-cast condition and after heat treatment at 250-300 degrees centigrade for periods of time 4-96 h. Immersion test was performed using not deaerated 3.5% NaCl solution at room temperature. Specimens were placed in 3.5% NaCl solution for periods of time between one and 7 days. The dissolution rates (mg cm-2 day-1) were determined by weight loss measurements. After immersion test, the microstructure and the appearances of the corroded structure were examined by scanning electron microscopy. Findings: The corrosion rate of WE54 alloy strongly depends on heat treatment condition. WE54 alloy in the as-cast and after solution treated have similar corrosion behavior, different from that of aged specimens. The curves of corrosion rate for aged specimens were higher than that for as-cast and solution treated conditions. It was also noticed that the longer time of ageing the higher corrosion rates were observed. Research limitations/implications: The knowledge about corrosion behavior of Mg-RE-Zr currently under evaluation on many speciality applications where lightweight connected with optimum corrosion resistance are required. Practical implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currently under evaluation on many speciality applications where lightweight connected with optimum corrosion resistance are required. Originality/value: This paper includes the effect of heat treatment condition on corrosion resistance of WE54 magnesium alloy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.