Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Voronovskaja-type theorem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote About some linear and positive operators defined by infinite sum
100%
|
|
tom Vol. 39, nr 2
377-388
EN
In [13], we study a class of linear and positive operators defined by finite sum. In this paper we demonstrate general properties for a class of linear positive operators denned by infinite sum. By particularization, we obtain statements, the convergence and the evaluation for the rate of convergence in therm of the first modulus of smoothness for the Mirakjan-Favard-Szasz operators, Baskakov operators and Mayer-Konig and Zeiler operators. We don't study the convergence of these operators with the well known theorem of Bohman-Korowkin.
2
Content available remote Convergence of generalized sampling series in weighted spaces
100%
EN
The present paper deals with an extension of approximation properties of generalized sampling series to weighted spaces of functions. A pointwise and uniform convergence theorem for the series is proved for functions belonging to weighted spaces. A rate of convergence by means of weighted moduli of continuity is presented and a quantitative Voronovskaja-type theorem is obtained.
3
Content available remote Voronovskaja-type theorems and approximation theorems for a class of GBS operators
100%
|
|
tom Nr 42
91-108
EN
In this paper we will demonstrate a Voronovskajatype theorems and approximation theorems for GBS operators associated to some linear positive operators. Through parti- cular cases, we obtain statements verified by the GBS operators of Bernstein, Schurer, Durrmeyer, Kantorovich, Stancu, Bleimann- Butzer-Hahn, Mirakjan-Favard-Szász, Baskakov, Meyer-König and Zeller, Ismail-May.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.