Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Variational methods
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Open Mathematics
|
2017
|
tom 15
|
nr 1
578-586
EN
Using variational methods, we investigate the solutions of a class of fractional Schrödinger equations with perturbation. The existence criteria of infinitely many solutions are established by symmetric mountain pass theorem, which extend the results in the related study. An example is also given to illustrate our results.
2
Content available remote Multiplicity solutions of a class fractional Schrödinger equations
100%
EN
In this paper, we study the existence of nontrivial solutions to a class fractional Schrödinger equations (−Δ)su+V(x)u=λf(x,u)inRN, $$ {( - \Delta )^s}u + V(x)u = \lambda f(x,u)\,\,{\rm in}\,\,{\mathbb{R}^N}, $$ where [...] (−Δ)su(x)=2limε→0∫RN∖Bε(X)u(x)−u(y)|x−y|N+2sdy,x∈RN $ {( - \Delta )^s}u(x) = 2\lim\limits_{\varepsilon \to 0} \int_ {{\mathbb{R}^N}\backslash {B_\varepsilon }(X)} {{u(x) - u(y)} \over {|x - y{|^{N + 2s}}}}dy,\,\,x \in {\mathbb{R}^N} $ is a fractional operator and s ∈ (0, 1). By using variational methods, we prove this problem has at least two nontrivial solutions in a suitable weighted fractional Sobolev space.
EN
Triple solutions are obtained for a discrete problem involving a nonlinearly perturbed one-dimensional p(k)-Laplacian operator and satisfying Dirichlet boundary conditions. The methods for existence rely on a Ricceri-local minimum theorem for differentiable functionals. Several examples are included to illustrate the main results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.