Author introduction (translated from the Polish): "This paper is an attempt to extend Galerkin's variable directions method ADG, used in the solution of differential equations [see M. Dryja , same journal 15 (1979), 5–23; MR0549983; G. Fairweather , Finite element Galerkin methods for differential equations, Chapter 6, Dekker, New York, 1978; MR0495013] to inequalities. The numerical properties of the scheme of the ADG method are discussed using the example of the following variational problem: Find a function u:(0,T)→K⊂V⊂H such that: (u′+Au−f,v−u)H≥0 for all v∈K and almost all t in [0,T), u(0)=u0, where V and H are Hilbert spaces of functions defined on Ω. The problem studied in this paper is called a parabolic obstacle variational inequality. We restrict ourselves to problems with a symmetric operator A whose coefficients do not depend on the time variable."
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants and are valid for any conforming approximations regardless of the method used for their derivation. It is shown that the structure of error majorant reflects properties of the exact solution so that the majorant vanishes only if an approximate solution coincides with the exact one. Moreover, it possesses necessary continuity properties, so that any sequence of approximations converging to the exact solution in the energy space generates a sequence of positive numbers (explicitly computable by the majorant functional) that tends to zero.
A simple age-dependent population dynamics model with an additional structure or physiological variable is presented in its variational formulation. Although the model is well-posed, the closed form solution with space variable is difficult to obtain explicitly, we prove the uniqueness of its solutions using the fundamental Green’s formula. The space variable is taken into account in the extended model with the assumption that the coefficient of diffusivity is unity.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Based on conjugate duality we construct several gap functions for general variational inequalities and equilibrium problems, in the formulation of which a so-called perturbation function is used. These functions are written with the help of the Fenchel-Moreau conjugate of the functions involved. In case we are working in the convex setting and a regularity condition is fulfilled, these functions become gap functions. The techniques used are the ones considered in [Altangerel L., Boţ R.I., Wanka G., On gap functions for equilibrium problems via Fenchel duality, Pac. J. Optim., 2006, 2(3), 667–678] and [Altangerel L., Boţ R.I., Wanka G., On the construction of gap functions for variational inequalities via conjugate duality, Asia-Pac. J. Oper. Res., 2007, 24(3), 353–371]. By particularizing the perturbation function we rediscover several gap functions from the literature. We also characterize the solutions of various variational inequalities and equilibrium problems by means of the properties of the convex subdifferential. In case no regularity condition is fulfilled, we deliver also necessary and sufficient sequential characterizations for these solutions. Several examples are illustrating the theoretical aspects.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we introduce a new iterative process for finding the common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality problem for an α-inverse-strongly-monotone, by combining an modified extragradient scheme with the viscosity approximation method. We prove a strong convergence theorem for the sequences generated by this new iterative process.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.