In response to the inability of the flexible DC transmission system connected to the AC grid under conventional control strategies to provide inertia to the system as well as to participate in frequency regulation, a virtual synchronous generator (VSG) control strategy is proposed for a voltage source converter (VSC)-based multi-terminal high-voltage direct current (VSC-MTDC) interconnection system. First, the virtual controller module is designed by coupling AC frequency and active power through virtual inertia control, so that the VSC-MTDC system can provide inertia response for AC grid frequency. Second, by introducing the power margin of the converter station into the droop coefficient, the unbalanced power on the DC side is reasonably allocated to reduce the overshoot of the DC voltage in the regulation process. Finally, the power regulation capability of the normal AC system is used to provide power support to the fault end system, reducing frequency deviations and enabling inter-regional resource complementation. The simulation model of the three-terminal flexible DC grid is built in PSCAD/EMTDC, and the effectiveness of the proposed control strategy is verified by comparing the conventional control strategy and the additional frequency control strategy.
The virtual synchronous generator (VSG) and sinusoidal pulse width modulation (SPWM) are two prominent control strategies that have attracted particular interest recently. In this paper, we compare these two inverter control strategies in a 5MW wind power conversion chain. The studied conversion chain includes a wind turbine, a permanent magnet synchronous generator, the power converters, namely the uncontrolled rectifier, and a two-stage inverter connected to the grid via an LCL filter. Our study of the two control methods shows that both strategies reduce the total harmonic distortion (THD) while respecting the grid connection conditions. The simulation results manifest that the VSG strategy has a better THD reduction of 0.99 % which is improved compared to the SPWM with a THD of 1.33%.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.