Constructing a high-performance photovoltaic (PV) system refers to extracting the characteristics of solar cell models. A population-based algorithm with a parameter-free design called Teaching and Learning Based Optimization (TLBO), inspired by the way teachers teach in the classroom, is proposed in this paper to identify the unknown electrical parameters of different solar cell models i.e., a single diode and a dual diode. The main objective is to extract the optimal parameters of PV system. To evaluate the proposed TLBO, we compared it to the fundamental genetic algorithm (GA), Particle Swarm Optimization (PSO), and other approaches in the literature. The results revealed a strong performance of the developed method. The results revealed the strong performance of the developed TLBO method and outperformed other optimization techniques with a high degree of accuracy in the objective function. In addition, the efficiency of the results is supported by the excellent agreement between the data of a commercial silicon R.T.C France solar cell and the simulated results under all circumstances.
PL
Konstrukcja wysokowydajnego systemu fotowoltaicznego (PV) odnosi się do wydobycia cech modeli ogniw słonecznych. W niniejszej pracy zaproponowano algorytm oparty na populacji z konstrukcją bez parametrów zwany Teaching and Learning Based Optimization (TLBO), zainspirowany sposobem nauczania przez nauczycieli w klasie, w celu identyfikacji nieznanych parametrów elektrycznych ró˙znych modeli ogniw słonecznych tj. pojedynczej diody i podwójnej diody. Głównym celem jest wydobycie optymalnych parametrów systemu PV. Aby ocenić proponowany TLBO, porównaliśmy go z podstawowym algorytmem genetycznym (GA), Particle Swarm Optimization (PSO) i innymi podejściami w literaturze. Wyniki ujawniły silną wydajność opracowanej metody. Wyniki ujawniły silną wydajność opracowanej metody TLBO i przewyższają inne techniki optymalizacji z dużą dokładnością funkcji celu. Dodatkowo, skuteczność wyników jest poparta doskonałą zgodnością pomiędzy danymi komercyjnego krzemowego ogniwa słonecznego R.T.C France a wynikami symulacji we wszystkich okolicznościach.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Renewable energy can make the utility grid unstable by causing some problems, such as frequency fluctuations, voltage surges, and power instability because of the inconsistency of renewable energy resources. This paper focused on studying the effect of intermittent renewable energy represented by a PV-integrated grid on the frequency system response and grid voltage surge. Heuristic Optimization methods, Teaching learning-based optimization (TLBO), and particle swarm optimization (PSO) have been utilized to optimize the penetration of PV energy enhancing the supply frequency response. Both optimization methods have been implemented with different values of irradiance. Although they have similar performances, the simulation result showed that the TLBO method has a slightly better low-frequency oscillation than the PSO method. It is found that the TLBO algorithm presents a good power quality response of the grid-connected system. This is due to the fact of TLBO is faster than the PSO algorithm because it does not need specific parameters. The system is applied to a feeder in a distribution network in Baghdad power sector. The results are obtained by using the MATLAB package.
PL
Energia odnawialna może spowodować niestabilność sieci elektroenergetycznej, powodując pewne problemy, takie jak wahania częstotliwości, skoki napięcia i niestabilność mocy z powodu niespójności zasobów energii odnawialnej. W artykule skupiono się na badaniu wpływu przerywanej energii odnawialnej reprezentowanej przez zintegrowaną sieć fotowoltaiczną na odpowiedź systemu częstotliwości i udary napięcia sieciowego. Aby zoptymalizować przenikanie energii fotowoltaicznej, zwiększając charakterystykę częstotliwościową zasilania, zastosowano metody optymalizacji heurystycznej, optymalizacji opartej na uczeniu się (TLBO) i optymalizacji roju cząstek (PSO). Obie metody optymalizacji zostały zaimplementowane przy różnych wartościach natężenia napromieniowania. Chociaż mają one podobne właściwości, wynik symulacji pokazał, że metoda TLBO charakteryzuje się nieco lepszymi oscylacjami w zakresie niskich częstotliwości niż metoda PSO. Stwierdzono, że algorytm TLBO zapewnia dobrą odpowiedź dotyczącą jakości energii w systemie podłączonym do sieci. Wynika to z faktu, że TLBO jest szybszy od algorytmu PSO, ponieważ nie wymaga określonych parametrów. System stosowany jest w polu zasilającym w sieci dystrybucyjnej w sektorze energetycznym Bagdadu. Wyniki uzyskuje się za pomocą pakietu MATLAB.
The paper aims at localization of the anchor node (fixed node) by pursuit nodes (movable node) in outdoor location. Two methods are studied for node localization. The first method is based on LNSM (Log Normal Shadowing Model) technique to localize the anchor node and the second method is based on Hybrid TLBO (Teacher Learning Based Optimization Algorithm) - Unilateral technique. In the first approach the ZigBee protocol has been used to localize the node, which uses RSSI (Received Signal Strength Indicator) values in dBm. LNSM technique is implemented in the self-designed hardware node and localization is studied for Outdoor location. The statistical analysis using RMSE (root mean square error) for outdoor location is done and distance error found to be 35 mtrs. The same outdoor location has been used and statistical analysis is done for localization of nodes using Hybrid TLBO-Unilateral technique. The Hybrid-TLBO Unilateral technique significantly localizes anchor node with distance error of 0.7 mtrs. The RSSI values obtained are normally distributed and standard deviation in RSSI value is observed as 1.01 for outdoor location. The node becomes 100% discoverable after using hybrid TLBO- Unilateral technique.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.