In 2014, Apple unveiled a completely new programming language for the iOS and OS X platforms. Swift was presented as a modern programming language, such as: safe, easy to learn and easy to use. This article presents the performance comparison between the Swift and Objective-C languages. For the purpose of the research, two applications were developed, one in each language, implementing sorting algorithms and data structures such as arrays, dictionaries and sets.
PL
W 2014 roku firma Apple zaprezentowała nowy język programowania na platformę iOS oraz OS X. Swift został przedstawiony jako nowoczesny język programowania: bezpieczny, łatwy do nauki i prosty w użyciu. Artykuł przedstawia porównanie wydajności języków Swift i Objective-C biorąc pod uwagę czasy wykonania algorytmów. W celu przeprowadzenia badań powstały w obu językach aplikacje implementujące algorytmy sortowania oraz operacje na strukturach danych takich jak: tablice, słowniki oraz zbiory.
The affinity between Kafka and Vallejo is based on the transformation from man to animal that they present in their narratives: The Metamorphosis and “The Caynas”. In both of them the transformation occur gradually and they construct an oppressive atmosphere in a sort of “fatum” which ends in the meaninglessness of existence. Given the impossibility of a direct influence Kafka’s on Vallejo due to the dates of publication, the origin of the affinity is to be found in the readings that they share.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Efficiently utilizing the rapidly increasing concurrency of multi-petaflop computing systems is a significant programming challenge. One approach is to structure applications with an upper layer of many loosely coupled coarse-grained tasks, each comprising a tightly-coupled parallel function or program. “Many-task” programming models such as functional parallel dataflow may be used at the upper layer to generate massive numbers of tasks, each of which generates significant tightly coupled parallelism at the lower level through multithreading, message passing, and/or partitioned global address spaces. At large scales, however, the management of task distribution, data dependencies, and intertask data movement is a significant performance challenge. In this work, we describe Turbine, a new highly scalable and distributed many-task dataflow engine. Turbine executes a generalized many-task intermediate representation with automated self-distribution and is scalable to multi-petaflop infrastructures. We present here the architecture of Turbine and its performance on highly concurrent systems.
The article describes comparison of two technologies used for creating mobile applications - cross-platform Xamarin and native for Android and iOS. The base constitutes results of appropriate tests executed by application created for that purpose.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.